某车间将10名技工平均分为甲,乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
已知数列{},其前n项和满足(是大于0的常数),且,. (Ⅰ)求的值; (Ⅱ)求数列{}的通项公式
某班数学兴趣小组有男生三名,分别记为,女生两名,分别记为,现从中任选2名学生去参加校数学竞赛. (1)写出这种选法的样本空间; (2)求参赛学生中恰有一名男生的概率; (3)求参赛学生中至少有一名男生的概率.
如图,O是正方形ABCD的中心,PO底面ABCD,E是PC的中点。 求证:(Ⅰ)PA∥平面BDE; (Ⅱ)平面PAC平面BDE。
在等比数列中,, 试求:(I)和公比;(II)前6项的和.