已知函数.(1)求的单调区间;(2)若,且对任意恒成立,求的最大值;(3)对于在区间上任意一个常数,是否存在正数,使得成立?请说明理由.
已知正方体,是底对角线的交点,求证: (1)∥面; (2)⊥面.
数列满足,. (1)求证:; (2)设,求不超过的最大整数.
如图:已知正六边形边长为1,把四边形沿着向上翻折成一个立体图形. (1)求证:; (2)若时,求二面角的正切值.
(1)求关于的不等式的解集. (2)求证:,.
如图:已知四棱柱的底面是菱形,该菱形的边长为1,,. (1)设棱形的对角线的交点为,求证://平面; (2)若四棱柱的体积,求与平面所成角的正弦值.