(本小题共14分)在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角,G是DF上一动点求证:(1)GN垂直AC(2)当FG=GD时,求证:GA||平面FMC。
某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总得分数,求ξ的分布列
解关于的不等式:
一个圆环直径为m,通过金属链条、、、(、、是圆上三等分点)悬挂在处,圆环呈水平状态,并距天花板2m(如图所示),为使金属链条总长最小,的长应为
已知点是函数且)的图象上一点,等比数列的前项和为,数列的首项为 ,且前项和满足(1)求数列和的通项公式;(2)若数列{前项和为,问>的最小正整数是多少? .
已知函数 . (1)解不等式; (2)设时,有最小值为,求的值.