如图,在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点。(1)求两点纵坐标的乘积;(2)若点的坐标为,连接交圆于另一点.①试判断点与以为直径的圆的位置关系,并说明理由;②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
已知椭圆的离心率为,过右顶点的直线与椭圆相交于、两点,且. (1)求椭圆和直线的方程; (2)记曲线在直线下方的部分与线段AB所围成的平面区域(含边界)为.若曲线与有公共点,试求实数的最小值.
已知舰在舰的正东,距离6公里,舰在舰的北偏西30°,距离4公里,它们准备围找海洋动物,某时刻舰发现动物信号,4秒后,舰,同时发现这种信号,于是发射麻醉炮弹,设舰与动物都是静止的,动物信号的传播速度为1公里/1秒,求舰炮击的方位角.
已知抛物线方程为,过点的直线AB交抛物线于点、,若线段的垂直平分线交轴于点,求的取值范围.
已知圆与两坐标轴都相切,圆心到直线的距离等于. (1)求圆的方程; (2)若圆心在第一象限,点是圆上的一个动点,求的取值范围.
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。 (1)求闭函数符合条件②的区间[]; (2)判断函数是否为闭函数?并说明理由; (3)若函数是闭函数,求实数的取值范围