已知直线:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.
表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为( )
x |
3 |
4 |
5 |
6 |
y |
2.5 |
t |
4 |
4.5 |
A.3 B.3.15 C.3.5 D.4.5
(本小题满分13分)已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)证明函数只有一个零点.
(本小题满分13分)设函数的定义域为A,集合.
(Ⅰ)若,求;
(Ⅱ)若集合中恰有一个整数,求实数a的取值范围.
过曲线C:上一点作曲线C的切线,若切线的斜率为-4,则等于( )
A.2 | B. | C.4 | D. |
已知为不相等的两个正数,且,则函数和的图象之间的关系是( )
A.关于原点对称 | B.关于y轴对称 |
C.关于x轴对称 | D.关于直线对称 |
(本小题满分13分)盒中装有7个零件,其中5个是没有使用过的,2个是使用过的.
(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用过零件的概率;
(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.
(本小题满分13分)在一次射击游戏中,规定每人最多射击3次;在A处击中目标得3分,在B,C处击中目标均得2分,没击中目标不得分;某同学在A处击中目标的概率为,在B,C处击中目标的概率均为.
该同学依次在A,B,C处各射击一次,各次射击之间没有影响,求在一次游戏中:
(Ⅰ)该同学得4分的概率;
(Ⅱ)该同学得分少于5分的概率.
设,则=____________;
_____________.
甲、乙两人分别从四种不同品牌的商品中选择两种,则甲、乙所选的商品中恰有一种品牌相同的选法种数是( )
A.30 | B.24 | C.12 | D.6 |
(本小题满分10分) 选修4-4:极坐标系与参数方程
在极坐标系中曲线的极坐标方程为,点.以极点为原点,以极轴为轴正半轴建立直角坐标系.斜率为的直线过点,且与曲线交于两点.
(Ⅰ)求出曲线的直角坐标方程和直线的参数方程;
(Ⅱ)求点到两点的距离之积.