在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为 (为参数),直线与曲线相交于两点.
(Ⅰ)写出曲线的直角坐标方程和直线的普通方程;
(Ⅱ)若,求的值.
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中为的导函数.证明:对任意.
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校学年高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在分下的学生后,共有男生名,女生名,现采用分层抽样的方法,从中抽取了名学生,按性别分为两组,并将两组学生成绩分为组,得到如下所示频数分布表.
分数段 |
||||||
男 |
||||||
女 |
(1)估计男、女生各自的平均分(同一组数据用该级区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定分以上者为优分(含分),请你根据已知条件作出列联表,并判断是否有以上的把握认为“数学成绩与性别有关”.
|
优分 |
非优分 |
合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
一个算法的程序框图如下图所示,若该程序输出的结果为,则判断框中应填入的条件是____.
已知函数,若存在,则实数的取值范围为()
A. | B. |
C. | D. |
道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.
某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.
|
优秀 |
非优秀 |
总计 |
课改班 |
|
50 |
|
非课改班 |
20 |
|
110 |
合计 |
|
|
210 |
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
设是的导数.某同学经过探究发现,任意一个三次函数()都有对称中心,其中x0满足.已知,则( )
A.2012 | B.2013 | C.2014 | D.2015 |
如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于点A(-1,0)、B (3,0)两点,直线y=x-2与x轴交于点D.与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=3EF,求m的值.
一个盒子内装有仅颜色不同的四个球,其中红球1个、绿球1个、白球2个;小明摸出一个球,记下颜色后放回盒子,再摸出一个球,则两次都摸到白球的概率是