初中数学

已知扇形的弧长为 2 π ,圆心角为 60 ° ,则它的半径为  

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形,点 D BC ̂ 上,点 E 在弦 AB ( E 不与 A 重合),且四边形 BDCE 为菱形.

(1)求证: AC = CE

(2)求证: B C 2 A C 2 = AB · AC

(3)已知 O 的半径为3.

①若 AB AC = 5 3 ,求 BC 的长;

②当 AB AC 为何值时, AB · AC 的值最大?

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上的点,过点 C O 的切线交 AB 的延长线于点 D .若 A = 32 ° ,则 D =   度.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

等腰三角形 ABC 中,顶角 A 40 ° ,点 P 在以 A 为圆心, BC 长为半径的圆上,且 BP = BA ,则 PBC 的度数为  

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,公园内有一个半径为20米的圆形草坪, A B 是圆上的点, O 为圆心, AOB = 120 ° ,从 A B 只有路 AB ̂ ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路 AB .通过计算可知,这些市民其实仅仅少走了  步(假设1步为0.5米,结果保留整数).(参考数据: 3 1 . 732 π 3 . 142 )

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 AB O 直径, AC O 的切线,连接 BC O 于点 F ,取 BF ̂ 的中点 D ,连接 AD BC 于点 E ,过点 E EH AB H

(1)求证: ΔHBE ΔABC

(2)若 CF = 4 BF = 5 ,求 AC EH 的长.

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AC O 的直径,弦 BD AO E ,连接 BC ,过点 O OF BC F ,若 BD = 8 cm AE = 2 cm ,则 OF 的长度是 (    )

A. 3 cm B. 6 cm C. 2 . 5 cm D. 5 cm

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB 是圆锥的母线, BC 为底面直径,已知 BC = 6 cm ,圆锥的侧面积为 15 πc m 2 ,则 sin ABC 的值为 (    )

A. 3 4 B. 3 5 C. 4 5 D. 5 3

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,点 A B C O 上, ACB = 35 ° ,则 AOB 的度数是 (    )

A. 75 ° B. 70 ° C. 65 ° D. 35 °

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为8, M AB 的中点, P BC 边上的动点,连接 PM ,以点 P 为圆心, PM 长为半径作 P .当 P 与正方形 ABCD 的边相切时, BP 的长为  

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° A = 30 ° AB = 4 ,以点 B 为圆心, BC 长为半径画弧,交边 AB 于点 D ,则 CD ̂ 的长为 (    )

A. 1 6 π B. 1 3 π C. 2 3 π D. 2 3 3 π

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中,点 O 在斜边 AB 上,以 O 为圆心, OB 为半径作圆,分别与 BC AB 相交于点 D E ,连接 AD .已知 CAD = B

(1)求证: AD O 的切线.

(2)若 BC = 8 tan B = 1 2 ,求 O 的半径.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1是小明制作的一副弓箭,点 A D 分别是弓臂 BAC 与弓弦 BC 的中点,弓弦 BC = 60 cm .沿 AD 方向拉动弓弦的过程中,假设弓臂 BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点 D 拉到点 D 1 时,有 A D 1 = 30 cm B 1 D 1 C 1 = 120 °

(1)图2中,弓臂两端 B 1 C 1 的距离为   cm

(2)如图3,将弓箭继续拉到点 D 2 ,使弓臂 B 2 A C 2 为半圆,则 D 1 D 2 的长为   cm

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 2 ,点 E CD 上, DE = 1 ,点 F 是边 AB 上一动点,以 EF 为斜边作 Rt Δ EFP .若点 P 在矩形 ABCD 的边上,且这样的直角三角形恰好有两个,则 AF 的值是  

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学圆试题