初中数学

如图,已知 AB CD O 的直径,过点 C O 的切线交 AB 的延长线于点 P O 的弦 DE AB 于点 F ,且 DF = EF

(1)求证: C O 2 = OF · OP

(2)连接 EB CD 于点 G ,过点 G GH AB 于点 H ,若 PC = 4 2 PB = 4 ,求 GH 的长.

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 4 BC = 3 ,以点 A 为原点建立平面直角坐标系,使 AB x 轴正半轴上,点 D AC 边上的一个动点, DE / / AB BC E DF AB F EG AB G .以下结论:

ΔAFD ΔDCE ΔEGB

②当 D AC 的中点时, ΔAFD ΔDCE

③点 C 的坐标为 ( 3 . 2 , 2 . 4 )

④将 ΔABC 沿 AC 所在的直线翻折到原来的平面,点 B 的对应点 B 1 的坐标为 ( 1 . 6 , 4 . 8 )

⑤矩形 DEGF 的最大面积为3.在这些结论中正确的有  (只填序号)

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,在四边形 BCDE 中, BC CD DE CD AB AE ,垂足分别为 C D A BC AC ,点 M N F 分别为 AB AE BE 的中点,连接 MN MF NF

(1)如图2,当 BC = 4 DE = 5 tan FMN = 1 时,求 AC AD 的值;

(2)若 tan FMN = 1 2 BC = 4 ,则可求出图中哪些线段的长?写出解答过程;

(3)连接 CM DN CF DF .试证明 ΔFMC ΔDNF 全等;

(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.

来源:2018年山东省威海市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

正方形 ABCD 的边长为1,点 O BC 边上的一个动点(与 B C 不重合),以 O 为顶点在 BC 所在直线的上方作 MON = 90 °

(1)当 OM 经过点 A 时,

①请直接填空: ON       (可能,不可能)过 D 点;(图1仅供分析)

②如图2,在 ON 上截取 OE = OA ,过 E 点作 EF 垂直于直线 BC ,垂足为点 F ,作 EH CD H ,求证:四边形 EFCH 为正方形.

(2)当 OM 不过点 A 时,设 OM 交边 AB G ,且 OG = 1 .在 ON 上存在点 P ,过 P 点作 PK 垂直于直线 BC ,垂足为点 K ,使得 S ΔPKO = 4 S ΔOBG ,连接 GP ,求四边形 PKBG 的最大面积.

来源:2017年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD / / BC ABC = 90 ° AB = 2 7 B B ' = 2 AD = 2 ,将 ΔABC 绕点 C 顺时针方向旋转后得△ A ' B ' C ,当 A ' B ' 恰好经过点 D 时,△ B ' CD 为等腰三角形,则 AA ' = (    )

A. 11 B. 2 3 C. 13 D. 14

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DF / / BC ABC 的平分线 BE DF 于点 G GH DF ,点 E 恰好为 DH 的中点,若 AE = 3 CD = 2 ,则 GH = (    )

A.1B.2C.3D.4

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中, B = C = 90 ° AB = 3 BC = 4 CD = 1 .以 AD 为腰作等腰 ΔADE ,使 ADE = 90 ° ,过点 E EF DC 交直线 CD 于点 F .请画出图形,并直接写出 AF 的长.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,方格纸中每个小正方形的边长均为1,线段 AB 的两个端点均在小正方形的顶点上.

(1)在图中画出以线段 AB 为一边的矩形 ABCD (不是正方形),且点 C 和点 D 均在小正方形的顶点上;

(2)在图中画出以线段 AB 为一腰,底边长为 2 2 的等腰三角形 ABE ,点 E 在小正方形的顶点上,连接 CE ,请直接写出线段 CE 的长.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,平行四边形纸片 ABCD 的边 AB BC 的长分别是 10 cm 7 . 5 cm ,将其四个角向内对折后,点 B 与点 C 重合于点 C ' ,点 A 与点 D 重合于点 A ' .四条折痕围成一个“信封四边形” EHFG ,其顶点分别在平行四边形 ABCD 的四条边上,则 EF =    cm

来源:2019年贵州省遵义市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° ,且 BA = 3 AC = 4 ,点 D 是斜边 BC 上的一个动点,过点 D 分别作 DM AB 于点 M DN AC 于点 N ,连接 MN ,则线段 MN 的最小值为  

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图1,已知 O ΔADB 的外接圆, ADB 的平分线 DC AB 于点 M ,交 O 于点 C ,连接 AC BC

(1)求证: AC = BC

(2)如图2,在图1的基础上做 O 的直径 CF AB 于点 E ,连接 AF ,过点 A O 的切线 AH ,若 AH / / BC ,求 ACF 的度数;

(3)在(2)的条件下,若 ΔABD 的面积为 6 3 ΔABD ΔABC 的面积比为 2 : 9 ,求 CD 的长.

来源:2018年广西桂林市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

已知: A B 两点在直线 l 的同一侧,线段 AO BM 均是直线 l 的垂线段,且 BM AO 的右边, AO = 2 BM ,将 BM 沿直线 l 向右平移,在平移过程中,始终保持 ABP = 90 ° 不变, BP 边与直线 l 相交于点 P

(1)当 P O 重合时(如图2所示),设点 C AO 的中点,连接 BC .求证:四边形 OCBM 是正方形;

(2)请利用如图1所示的情形,求证: AB PB = OM BM

(3)若 AO = 2 6 ,且当 MO = 2 PO 时,请直接写出 AB PB 的长.

来源:2018年广西贵港市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在矩形 ABCD 的各条边上, AB = EF FG = 2 GC = 3 .有以下四个结论:① BGF = CHG ;② ΔBFG ΔDHE ;③ tan BFG = 1 2 ;④矩形 EFGH 的面积是 4 3 .其中一定成立的是  .(把所有正确结论的序号填在横线上)

来源:2018年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到 ΔABC ΔACD .并且量得 AB = 2 cm AC = 4 cm

操作发现:

(1)将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,过点 C AC ' 的平行线,与 D C ' 的延长线交于点 E ,则四边形 ACEC ' 的形状是  

(2)创新小组将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转,使 B A D 三点在同一条直线上,得到如图3所示的△ AC ' D ,连接 C C ' ,取 CC ' 的中点 F ,连接 AF 并延长至点 G ,使 FG = AF ,连接 CG C ' G ,得到四边形 ACGC ' ,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 ΔABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A ' 点, A ' C BC ' 相交于点 H ,如图4所示,连接 CC ' ,试求 tan C ' CH 的值.

来源:2018年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

再读教材:

宽与长的比是 5 1 2 (约为 0 . 618 ) 的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示: MN = 2 )

第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB ,并把 AB 折到图③中所示的 AD 处.

第四步,展平纸片,按照所得的点 D 折出 DE ,使 DE ND ,则图④中就会出现黄金矩形.

问题解决:

(1)图③中 AB =   (保留根号);

(2)如图③,判断四边形 BADQ 的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

实际操作

(4)结合图④,请在矩形 BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学矩形的判定与性质试题