如图,在中,,以斜边上的中线为直径作,分别与、交于点、.
(1)过点作的切线与相交于点,求证:;
(2)连接,求证:.
如图,为的内接三角形,的角平分线交于点,过点作交的延长线于点.
(1)求证:为的切线;
(2)若,求的大小.
我们定义:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称△是的“旋补三角形”,△ 边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△是的“旋补三角形”, 是的“旋补中线”.
①如图2,当为等边三角形时,与的数量关系为 ;
②如图3,当,时,则长为 .
猜想论证:
(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形,,,,,.在四边形内部是否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
如图,反比例函数的图象过格点(网格线的交点).
(1)求反比例函数的解析式;
(2)在图中用直尺和铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点,点;
②矩形的面积等于的值.
如图,在矩形中,,,为边上一点,,连接.动点、从点同时出发,点以的速度沿向终点运动;点以的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为.
(1) , ;
(2)求关于的函数解析式,并写出自变量的取值范围;
(3)当时,直接写出的值.
在矩形中,,,,分别为边,,,上的点(不与端点重合),对于任意矩形,下面四个结论中,
①存在无数个四边形是平行四边形;
②存在无数个四边形是矩形;
③存在无数个四边形是菱形;
④至少存在一个四边形是正方形.
所有正确结论的序号是 .
如图,河的两岸与相互平行,、是上的两点,、是上的两点,某人在点处测得,,再沿方向前进20米到达点(点在线段上),测得,求、两点间的距离.