一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离 (单位: 与慢车行驶时间 (单位: 的函数关系如图,则两车先后两次相遇的间隔时间是
A. |
|
B. |
|
C. |
|
D. |
|
某商贸公司购进某种商品的成本为20元 ,经过市场调研发现,这种商品在未来40天的销售单价 (元 与时间 (天 之间的函数关系式为: ,且日销量 与时间 (天 之间的变化规律符合一次函数关系,如下表:
时间 (天 |
1 |
3 |
6 |
10 |
|
日销量 |
142 |
138 |
132 |
124 |
|
(1)填空: 与 的函数关系为 ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售 商品就捐赠 元利润 给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间 的增大而增大,求 的取值范围.
红星公司销售一种成本为40元 件产品,若月销售单价不高于50元 件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为 (单位:元 件),月销售量为 (单位:万件).
(1)直接写出 与 之间的函数关系式,并写出自变量 的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 元.已知该公司捐款当月的月销售单价不高于70元 件,月销售最大利润是78万元,求 的值.
“互联网 ”让我国经济更具活力,直播助销就是运用“互联网 ”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.
(1)求每千克花生、茶叶的售价;
(2)已知花生的成本为6元 千克,茶叶的成本为36元 千克,甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?
为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本 (元 与种植面积 (亩 之间满足一次函数关系,且当 时, ;当 时, .
(1)求 与 之间的函数关系式(不求自变量的取值范围);
(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?
(每亩种植利润 每亩销售额 每亩种植成本 每亩种植补贴)
小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米 秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离 (米 与小亮出发时间 (秒 之间的函数图象,如图所示.根据所给信息解决以下问题.
(1) , ;
(2)求 和 所在直线的解析式;
(3)直接写出 为何值时,两人相距30米.
已知 、 两地相距 ,一辆货车从 前往 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从 地前往 地,到达 地后(在 地停留时间不计)立即原路原速返回.如图是两车距 地的距离 与货车行驶时间 之间的函数图象,结合图象回答下列问题:
(1)图中 的值是 ;轿车的速度是 ;
(2)求货车从 地前往 地的过程中,货车距 地的距离 与行驶时间 之间的函数关系式;
(3)直接写出轿车从 地到 地行驶过程中,轿车出发多长时间与货车相距 ?
如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度 与注水时间 之间的关系如图②所示,根据图象解答下列问题:
(1)图②中折线 表示 槽中水的深度与注入时间之间的关系;线段 表示 槽中水的深度与注入时间之间的关系;铁块的高度为 .
(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)
如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点 始终以 的速度在离地面 高的上空匀速向右飞行,2号试飞机(看成点 一直保持在1号机 的正下方.2号机从原点 处沿 仰角爬升,到 高的 处便立刻转为水平飞行,再过 到达 处开始沿直线 降落,要求 后到达 处.
(1)求 的 关于 的函数解析式,并直接写出2号机的爬升速度;
(2)求 的 关于 的函数解析式,并预计2号机着陆点的坐标;
(3)通过计算说明两机距离 不超过 的时长是多少.
注:(1)及(2)中不必写 的取值范围
黔东南州某销售公司准备购进 、 两种商品,已知购进3件 商品和2件 商品,需要1100元;购进5件 商品和3件 商品,需要1750元.
(1)求 、 两种商品的进货单价分别是多少元?
(2)若该公司购进 商品200件, 商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件 商品运往甲、乙两地的运费分别为20元和25元;每件 商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.
①设运往甲地的 商品为 (件 ,投资总运费为 (元 ,请写出 与 的函数关系式;
②怎样调运 、 两种商品可使投资总费用最少?最少费用是多少元?(投资总费用 购进商品的费用 运费)
为庆祝"中国共产党的百年华诞",某校请广告公司为其制作"童心向党"文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
产品 |
展板 |
宣传册 |
横幅 |
制作一件产品所需时间(小时) |
1 |
|
|
制作一件产品所获利润(元 |
20 |
3 |
10 |
(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离 与他所用的时间 的函数关系如图2所示.
(1)小刚家与学校的距离为 ,小刚骑自行车的速度为 ;
(2)求小刚从图书馆返回家的过程中, 与 的函数表达式;
(3)小刚出发35分钟时,他离家有多远?
某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.
(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?
(2)经营性质规定,该公司零售的数量不能多于总数量的 .现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?
新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售 , 两种型号的口罩9000只,共获利润5000元,其中 , 两种型号口罩所获利润之比为 .已知每只 型口罩的销售利润是 型口罩的1.2倍.
(1)求每只 型口罩和 型口罩的销售利润;
(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中 型口罩的进货量不超过 型口罩的1.5倍,设购进 型口罩 只,这10000只口罩的销售总利润为 元.该药店如何进货,才能使销售总利润最大?