小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米 / 秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离 S (米 ) 与小亮出发时间 t (秒 ) 之间的函数图象,如图所示.根据所给信息解决以下问题.
(1) m = , n = ;
(2)求 CD 和 EF 所在直线的解析式;
(3)直接写出 t 为何值时,两人相距30米.
某中学全校师生听取了"禁毒"宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展"我为禁毒献爱心"的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.
(1)求这组数据的平均数和众数;
(2)经调查,当学生身上的零花钱多于15元时,都愿捐出零花钱的 20 % ,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?
(3)捐款最多的两人将和另一个学校选出的两人组成一个"禁毒"知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.
已知关于 x 的一元二次方程 x 2 + x - m = 0 .
(1)若方程有两个不相等的实数根,求 m 的取值范围;
(2)二次函数 y = x 2 + x - m 的部分图象如图所示,求一元二次方程 x 2 + x - m = 0 的解.
已知 A x - 1 - B 2 - x = 2 x - 6 ( x - 1 ) ( x - 2 ) ,求 A 、 B 的值.
如图.已知 AB = DC , ∠ A = ∠ D , AC 与 DB 相交于点 O ,求证: ∠ OBC = ∠ OCB .
当 x 取何正整数值时,代数式 x + 3 2 与 2 x - 1 3 的值的差大于1.