已知 A 、 B 两地相距 240 km ,一辆货车从 A 前往 B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从 B 地前往 A 地,到达 A 地后(在 A 地停留时间不计)立即原路原速返回.如图是两车距 B 地的距离 y ( km ) 与货车行驶时间 x ( h ) 之间的函数图象,结合图象回答下列问题:
(1)图中 m 的值是 ;轿车的速度是 km / h ;
(2)求货车从 A 地前往 B 地的过程中,货车距 B 地的距离 y ( km ) 与行驶时间 x ( h ) 之间的函数关系式;
(3)直接写出轿车从 B 地到 A 地行驶过程中,轿车出发多长时间与货车相距 12 km ?
某海域有一小岛 P ,在以 P 为圆心,半径 r 为 10 ( 3 + 3 ) 海里的圆形海域内有暗礁.一海监船自西向东航行,它在 A 处测得小岛 P 位于北偏东 60 ° 的方向上,当海监船行驶 20 2 海里后到达 B 处,此时观测小岛 P 位于 B 处北偏东 45 ° 方向上.
(1)求 A , P 之间的距离 AP ;
(2)若海监船由 B 处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由 B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?
如图,点 E 是正方形 ABCD 的边 BC 上的动点, ∠ AEF = 90 ° ,且 EF = AE , FH ⊥ BH .
(1)求证: BE = CH ;
(2)若 AB = 3 , BE = x ,用 x 表示 DF 的长.
为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为 A 、 B 、 C 、 D 四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.
(1)这次预赛中,二班成绩在 B 等及以上的人数是多少?
(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;
(3)已知一班成绩 A 等的4人中有两个男生和2个女生,二班成绩 A 等的都是女生,年级要求从这两个班 A 等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.
抛物线 y = a x 2 - 2 bx + b ( a ≠ 0 ) 与 y 轴相交于点 C ( 0 , - 3 ) ,且抛物线的对称轴为 x = 3 , D 为对称轴与 x 轴的交点.
(1)求抛物线的解析式;
(2)在 x 轴上方且平行于 x 轴的直线与抛物线从左到右依次交于 E 、 F 两点,若 ΔDEF 是等腰直角三角形,求 ΔDEF 的面积;
(3)若 P ( 3 , t ) 是对称轴上一定点, Q 是抛物线上的动点,求 PQ 的最小值(用含 t 的代数式表示).
如图, PA 、 PB 是 ⊙ O 的切线, A 、 B 是切点, AC 是 ⊙ O 的直径,连接 OP ,交 ⊙ O 于点 D ,交 AB 于点 E .
(1)求证: BC / / OP ;
(2)若 E 恰好是 OD 的中点,且四边形 OAPB 的面积是 16 3 ,求阴影部分的面积;
(3)若 sin ∠ BAC = 1 3 ,且 AD = 2 3 ,求切线 PA 的长.