将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题: (1)在这次调查活动中,一共调查了 名学生; (2)“足球”所在扇形的圆心角是 度; (3)补全折线统计图.
(10分)如图1,O为正方形ABCD的中心, 分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针 旋转角得到△E1OF1(如图2). (1)探究AE1与BF1的数量关系,并给予证明; (2)当=30°时,求证:△AOE1为直角三角形.
(9分)光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力. (1)求甲、乙、丙三名学生在同一处检测视力的概率; (2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
(8分)如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O 于点C,OC平分∠AOB.求∠B的度数.
如图,已知直线l经过点A(1,0),与双曲线y= (x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平 行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N. (1)求m的值和直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA; (3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若 不存在,请说明理由.