将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
为丰富学生的校园文化生活,珠海第十中学举办了“十中好声音”才艺比赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺.(1)用列举法说明所有可能出现搭挡的结果;(2)求同一年级男、女选手组成搭档的概率;(3)求高年级男选手与低年级女选手组成搭档的概率.
目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(1)求大楼与电视塔之间的距离AC;(2)求大楼的高度CD(精确到1米)。(参考数据:sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)
如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥的侧面积和圆锥的高.(结果保留π)
如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?
如图,一次函数y=-x+b与反比例函数的图象相交于A(-1,4)、B(4,-1)两点,直线l⊥x轴于点E(-4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC(1)、求出b和k;(2)、求证:△ACD是等腰直角三角形;(3)、在y轴上是否存在点P,使,若存在,请求出P的坐标,若不存在,请说明理由。