如图,在一笔直的海岸线l上有A、B两个观测站,点A在点B的正东方向,AB=4km,有一艘小船在点P处,从点A 测得小船在北偏西60°方向,从点B测得小船在北偏东45°的方向.(1)求小船到海岸线l的距离;(2)小船从点P沿射线AP方向航行一段时间后,到C处,此时,从点B测得小船在北偏西15°的方向,求此时小船到观测点B的距离.(结果保留根号)
如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.
当a=2014时,求÷(a+)的值.
锐角中,,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形与公共部分的面积为.(1)中边上高 ; (2)当 时,恰好落在边上(如图1); (3)当在外部时(如图2),求关于的函数关系式(注明的取值范围),并求出为何值时最大,最大值是多少?
如图,已知Rt△ABC中,∠C=90°,CB=8,CA=6.(1)求作⊙O,使⊙O过点C,圆心O在CB上,且与边AB相切(用尺规作图,不写作法,保留痕迹) (2)求⊙O的半径
一次函数y=x–3的图象与轴,轴分别交于点.一个二次函数y=x2+bx+c的图象经过点.(1)求点的坐标,并画出一次函数y=x–3的图象;(2)求二次函数的解析式并求其图像顶点C的坐标.(3)求的面积。