初中数学

如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.
(1)求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值. 若不存在,请说明理由.
(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.
(1)设A地到甲地运送蔬菜x吨,请完成下表:

 
运往甲地(单位:吨)
运往乙地(单位:吨)
A
x
 
B
 
 

 
(2)设总运费为W元,请写出W与x的函数关系式.
(3)怎样调运蔬菜才能使运费最少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线的函数关系式为,且与x轴交于点D,直线经过定点A(4,0),B(-1,5),直线相交于点C,

(1)求直线的解析式;
(2)求△ADC的面积;
(3)在直线上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;
(4)在x轴上是否存在一点E,使得△BCE的周长最短,若存在请求出E点的坐标,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点A在双曲线y=(x>0)上,过点A作AC⊥x轴,垂足为C,线段OA的垂直平分线BD交x轴于点B,△ABC的周长为4,求点A的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.

(1)甲队单独完成这项工程,需要多少天?
(2)求乙队单独完成这项工程需要的天数;
(3)实际完成的时间比甲独做所需的时间提前多少天?

来源:2016届湖北省宜昌市点军区九年级上学期期中考试数学试卷
  • 更新:2021-12-01
  • 题型:未知
  • 难度:未知

小王每天从某报社以每份0.6元买进报纸300份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.3元退给小王,如果小王平均每天卖出报纸x份,纯收入为y元.
(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
(2)如果每月以30天计算,小王每天至少要卖多少份报纸(假设小王每天所卖报纸份数相同)才能保证每月收入不低于2600元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

杨佳明周日骑车从家里出发,去图书馆看书,
(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义:          ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;
(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义:           ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;
(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第     分钟,并求出她在骑行30分钟时的路程是       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,m).
求:(1)m的值;     
(2)一次函数y=kx+b的解析式;
(3)这两个函数图象与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国庆长假,小明从老家乘车去上海.一路上,小明记下了如下数据(注:“上海90km”表示离上海的距离为90km):

观察时间
10:30(t=0)
10:36(t=6)
10:30(t=18)
路牌内容
上海90Km
上海80Km
上海60Km

 
假设汽车离上海的距离s(km)是行驶时间t(min)的一次函数,求s关于t的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数y=kx+b的表达式.
(3)在同一坐标系中,画出这两个函数的图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

自2012年6月1日起,全国实施了阶梯电价.某省出台了阶梯电价方案:电价分“三档”收费,第一档为a度,居民用电量低于a度的部分,执行现行的标准电价(0.53元/度);第二档为a~b度,居民月用电量在a~b之间的部分,电价在一档电价的基础上提高0.05元/度;第三档为超过b度,居民月用电量高于b度的部分,电价在一档电价的基础上提高m元/度.实施阶梯电价后,月电费y(元)与月用电量x(度)之间的函数关系如图所示.

(1)求a,b,m的值;
(2)求y与x之间函数关系式,并写出自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出之间的函数关系式.
(2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;

请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题