初中数学

如图,已知一次函数与反比例函数的图象交于A,B两点.求A,B两点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车从A地前往B地,甲车行至AB的中点C处后,以原来速度的1.5倍继续行驶,在整个行程中,汽车离开A地的距离y与时刻t的对应关系如图所示,求:

(1)甲车何时到达C地;
(2)甲车离开A地的距离y与时刻t的函数解析式;
(3)乙车出发后何时与甲车相距20km.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某蒜薹(tái)生产基地喜获丰收,收获蒜薹200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨平均的售价及成本如下表:

销售方式
批发
零售
储藏后销售
售价(百元/吨)
3 0
4 5
5 5
成本(百元/吨)
7
1 0
1 2

 
若蒜薹按计划全部售出获得的总利润为y(百元),蒜薹零售x(吨),且批发量是零售量的3倍.
(1)求y与x之间的函数关系式;
(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:

(1)填空:
甲种收费方式的函数关系式是y1=            
乙种收费方式的函数关系式是y2=            
(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是          ,从点燃到燃尽甲所用的时间为                 
(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡低?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在“五•一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.
(1)求购进A、B两种品牌服 装的单价;
(2)该网站拟以不超过11200元的总价购进这种两品牌服装共100件,并全部售出.其中A种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,直线m与y的交点在x轴下方,与x轴距离2个单位长度,且直线m过点(1,-1).
(1)求:直线m的表达式;
(2)求:直线m与x轴的交点坐标;
(3)若直线n与直线m在x轴交于同一点,且直线n与直线m以及y轴所围成的三角形面积为4,请直接写出直线n的表达式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,m).
求:(1)m的值;     
(2)一次函数y=kx+b的解析式;
(3)这两个函数图象与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国庆长假,小明从老家乘车去上海.一路上,小明记下了如下数据(注:“上海90km”表示离上海的距离为90km):

观察时间
10:30(t=0)
10:36(t=6)
10:30(t=18)
路牌内容
上海90Km
上海80Km
上海60Km

 
假设汽车离上海的距离s(km)是行驶时间t(min)的一次函数,求s关于t的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数y=kx+b的表达式.
(3)在同一坐标系中,画出这两个函数的图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

自2012年6月1日起,全国实施了阶梯电价.某省出台了阶梯电价方案:电价分“三档”收费,第一档为a度,居民用电量低于a度的部分,执行现行的标准电价(0.53元/度);第二档为a~b度,居民月用电量在a~b之间的部分,电价在一档电价的基础上提高0.05元/度;第三档为超过b度,居民月用电量高于b度的部分,电价在一档电价的基础上提高m元/度.实施阶梯电价后,月电费y(元)与月用电量x(度)之间的函数关系如图所示.

(1)求a,b,m的值;
(2)求y与x之间函数关系式,并写出自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出之间的函数关系式.
(2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;

请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题