初中数学

如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.

(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数
(1)若图象交y轴于正半轴,求m的取值范围;
(2)若图象不经过第三象限,求m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,请根据图象所提供的信息解答下列问题:

(1)当x   时,kx+b≥mx-n;
(2)不等式kx+b<0的解集是              
(3)交点P的坐标(1,1)是一元二次方程组:           的解;
(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=-x的图象交于点C,点C的横坐标为-3.
(1)求点B的坐标;
(2)若点Q为直线OC上一点,且SQAC=3SAOC,求点Q的坐标;
(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.
①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)
②求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线y=﹣x+b交x轴于点A,交直线y=x于点B(2,m),矩形CDEF的边DC在x轴上,D在C的左侧,EF在x轴的上方,DC=2,DE=4.当点C的坐标为(﹣2,0)时,矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.

(1)求b,m的值;
(2)矩形CDEF运动t秒时,直接写出C、D两点的坐标(用含t的代数式表示);
(3)当点B在矩形CDEF的一边上时,求t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知到直线l的距离等于a的所有点的集合是与直线l平行且距离为a的两条直线l1、l2(如图①).
(1)在图②的平面直角坐标系中,画出到直线y=x+2的距离为1的所有点的集合的图形.并写出该图形与y轴交点的坐标.
(2)试探讨在以坐标原点O为圆心,r为半径的圆上,到直线y=x+2的距离为1的点的个数与r的关系.
(3)如图③,若以坐标原点O为圆心,2为半径的圆上只有两个点到直线y=x+b的距离为1,则b的取值范围为     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,

(1)求y与x之间的函数关系式,并画出函数图象,
(2)若x=20,求纸条的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,m).
求:(1)m的值;     
(2)一次函数y=kx+b的解析式;
(3)这两个函数图象与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国庆长假,小明从老家乘车去上海.一路上,小明记下了如下数据(注:“上海90km”表示离上海的距离为90km):

观察时间
10:30(t=0)
10:36(t=6)
10:30(t=18)
路牌内容
上海90Km
上海80Km
上海60Km

 
假设汽车离上海的距离s(km)是行驶时间t(min)的一次函数,求s关于t的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数y=kx+b的表达式.
(3)在同一坐标系中,画出这两个函数的图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

自2012年6月1日起,全国实施了阶梯电价.某省出台了阶梯电价方案:电价分“三档”收费,第一档为a度,居民用电量低于a度的部分,执行现行的标准电价(0.53元/度);第二档为a~b度,居民月用电量在a~b之间的部分,电价在一档电价的基础上提高0.05元/度;第三档为超过b度,居民月用电量高于b度的部分,电价在一档电价的基础上提高m元/度.实施阶梯电价后,月电费y(元)与月用电量x(度)之间的函数关系如图所示.

(1)求a,b,m的值;
(2)求y与x之间函数关系式,并写出自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出之间的函数关系式.
(2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;

请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题