如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程. (1)甲队单独完成这项工程,需要多少天? (2)求乙队单独完成这项工程需要的天数; (3)实际完成的时间比甲独做所需的时间提前多少天?
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED的形状,并说明理由; (2)若AB=6,BC=8,求四边形OCED的面积.
如图所示,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O.请在图中找出一对全等的三角形,并加以证明
如图16,AC⊥BD,AC=DC,BC=EC.求证:DE⊥AB.
在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等; ( 1 )根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有组; ( 2 )请在图中的三个平行四边形中画出满足小强分割方法的直线; ( 3 )由上述实验操作过程,你发现所画的两条直线有什么规律?
如图, 在平面直角坐标系中, 点(0,8), 点(6 , 8 ). (1)只用直尺(没有刻度)和圆规, 求作一个点,使点同时满足下列两个条件:(要求保留作图痕迹, 不必写出作法): ①点P到、两点的距离相等;②点P到的两边的距离相等. (2) 在(1)作出点后, 在图上写出点的坐标.