初中数学

如图,直线y = kx+6与x轴y轴分别相交于点E,F。点E的坐标为(- 8,0),点A的坐标为(- 6,0)。 点P(x,y)是第二象限内的直线上的一个动点。

(1)求k的值;
(2)当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置(求P的坐标)时,△OPA的面积为,并说明理由

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.
(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;
(2)若商店对这40箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完.
①求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;
②当x的值至少为多少时,商店才不会亏本.
(注:按整箱出售,利润=销售总收入﹣进货总成本)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:

(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本(万元/吨)与产量(吨)之间是一次函数关系,函数与自变量的部分对应值如下表:

(吨)
10
20
30
(万元/吨)
45
40
35

 
(1)求的函数关系式,并写出自变量的取值范围;
(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量)
(3)市场调查发现,这种产品每月销售量(吨)与销售单价(万元/吨)之间满足如图所示的函数关系.该厂第一个月按同一销售单价卖出这种产品25吨,请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价—成本)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知y与x-3成正比例,当x=4时,y=3;
(1)求y与x的函数式;
(2)当x=2时,求y的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.
请结合图象信息解答下列问题:

(1)直接写出a的值,并求甲车的速度;
(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;
(3)乙车出发多少小时与甲车相距15千米?直接写出答案.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:

①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;
③图中点B的坐标为(,75);
④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,m).
求:(1)m的值;     
(2)一次函数y=kx+b的解析式;
(3)这两个函数图象与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国庆长假,小明从老家乘车去上海.一路上,小明记下了如下数据(注:“上海90km”表示离上海的距离为90km):

观察时间
10:30(t=0)
10:36(t=6)
10:30(t=18)
路牌内容
上海90Km
上海80Km
上海60Km

 
假设汽车离上海的距离s(km)是行驶时间t(min)的一次函数,求s关于t的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数y=kx+b的表达式.
(3)在同一坐标系中,画出这两个函数的图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

自2012年6月1日起,全国实施了阶梯电价.某省出台了阶梯电价方案:电价分“三档”收费,第一档为a度,居民用电量低于a度的部分,执行现行的标准电价(0.53元/度);第二档为a~b度,居民月用电量在a~b之间的部分,电价在一档电价的基础上提高0.05元/度;第三档为超过b度,居民月用电量高于b度的部分,电价在一档电价的基础上提高m元/度.实施阶梯电价后,月电费y(元)与月用电量x(度)之间的函数关系如图所示.

(1)求a,b,m的值;
(2)求y与x之间函数关系式,并写出自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出之间的函数关系式.
(2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;

请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题