如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.(1)求b,c的值。(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值. 若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
如图,已知一次函数y=kx+b的图象交反比例函数(x>0)图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且,求m的值和C点的坐标;
如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?
如图,已知A(4,a),B(-2,-4)是一次函数y=kx+b 的图象和反比例函数的图象的交点. (1)求反比例函数和一次函数的解析式;(2)求△AOB的面积. (3)根据图象求出使一次函数的值大于反比例函数的值时,x的取值范围.
如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明:△ABD≌△BCE. (2)△AEF与△ABE相似吗?请说明理由. (3)试说明:BD2=AD·DF.
点O和△ABC的顶点均在小正方形的顶点. (1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1︰2; (2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)