初中数学

已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数y=kx+b的表达式.
(3)在同一坐标系中,画出这两个函数的图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图像经过点(-1.-5),且与正比例函数y=x的图象相交于点(2,m).
(1)求m的值;
(2)求一次函数y=kx+b的解析式;
(3)求这两个函数图像与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:

 
A型利润
B型利润
甲店
200
170
乙店
160
150

 
(1)设分配给甲店A型产品x件,这件公司卖出这100件产品的总利润W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若要求总利润不低于17560元,有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A、B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知一次函数与反比例函数的图象交于A,B两点.求A,B两点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

瓦甸科星化工有限公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.
(1)分别写出甲、乙两厂的收费 (元)、(元)与印制数量x(本)之间的关系式;
(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线的函数关系式为,且与x轴交于点D,直线经过定点A(4,0),B(-1,5),直线相交于点C,

(1)求直线的解析式;
(2)求△ADC的面积;
(3)在直线上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;
(4)在x轴上是否存在一点E,使得△BCE的周长最短,若存在请求出E点的坐标,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知甲、乙两地相距300km,小轿车从甲地出发驶往乙地,同时货车从相距乙地60km的入口A处驶往甲地(两车均在甲、乙两地之间的公路上匀速行驶),如图是它们离甲地的路程y(km)与货车行驶时间x(h)之间的函数的部分图像.

(1)求货车离甲地的路程y(km)与它行驶的时间x(h)的函数表达式;
(2)哪一辆车先到达目的地(小轿车达到乙地;货车到达甲地)?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明从兴化通过申通快递公司给在南京的朋友寄一盒苹果,快递时,他了解到申通快递公司除了收取每次6元的包装费外,苹果不超过2kg时收费22元,若超过2kg,则超过的部分按每千克10元收取费用,该公司从兴化到南京快递苹果的费用为y(元),小明所寄的苹果为x(kg)(x>2)
(1)求y与x的函数关系式;
(2)已知小明给朋友寄了2.5kg的苹果,请你求出这次快递的费用.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

用图像法求二元一次方程组的解.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知y与x-3成正比例,当x=4时,y=3;
(1)求y与x的函数式;
(2)当x=2时,求y的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.
(1)求利润S(元)与销售单价x(元)之间的关系式;
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.
(1)当m=4时,如图②.若反比例函数y =的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;
(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示.
 
(1)试判断y与x之间的函数关系,并求出函数关系式.
(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式.
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题