江苏省海安县七校九年级上学期第一次阶段性联考数学试卷
在平面直角坐标系内,点P(-3,2)关于原点的对称点Q的坐标为( )
A.(2,-3) | B.(3,2) | C.(3,-2) | D.(-3,-2) |
如图,已知∠ACB是⊙O的圆周角,∠ACB=50°,则圆心角∠AOB是 ( )
A.40° | B.50° | C.80° | D.100° |
对于二次函数的图象,下列说法正确的是( )
A.开口向上 |
B.对称轴是 |
C.顶点坐标是(1,2) |
D.与x轴有两个交点 |
在如图所示的网格中,△MNP绕某点旋转一定角度,得到△M1N1P1,其旋转中心可能是( )
A.点A | B.点B | C.点C | D.点D |
如图,在△ABC中,∠CAB=75°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=( )
A.30° | B.35° | C.40° | D.50° |
三角形两边长分别为3和6,第三边是方程x2-13x+36=0的根,则三角形的周长为
A.13 | B.15 | C.18 | D.13或18 |
要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位 |
B.向左平移1个单位,再向下平移2个单位 |
C.向右平移1个单位,再向上平移2个单位 |
D.向右平移1个单位,再向下平移2个单 |
股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为,则满足的方程是
A. |
B. |
C. |
D. |
如图6,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为( ).
A.4 | B.5 | C.6 | D.7 |
如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是()
(A)① (B)② (C)③ (D)④
如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.
如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是 .
如图,在平面直角坐标系中,⊙E与两坐标轴分别交于A、B、C、D四点,已知A(6,0),C(-2,0),则B点坐标为 .
如图,已知直线y=-x+3分别交x轴、y轴于点A、B,P是抛物线y=-x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=-x+3于点Q,则当PQ=BQ时,a的值是 .
已知关于x的方程x2-2(k+1)x+k2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)求证:x=-1不可能是此方程的实数根.
已知二次函数
(1)求它的顶点坐标和对称轴;
(2)画出这个函数的图象;
(3)根据图象回答:当取哪些值时,=0,>0,<0
如图是规格为8×8的正方形网格,请你在所给的网格中按下列要求操作:
(1)请在网格中建立直角坐标系,使A点坐标为(4,-2),B点坐标为(2,-4),C点的坐标为(1,-1);
(2)画出△ABC以点C为旋转中心,旋转180°后的△A1B1C,连接AB1和A1B,试写出四边形ABA1B1是何特殊四边形,并说明理由.
如图,AB是⊙O的直径,弦BC长为,弦AC长为2,∠ACB的平分线交⊙O于点D,求AB和AD的长.
如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的半径;
(2)若∠M=∠D,求∠D的度数.
如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC
(1)若∠CBD=39°,求∠BAD的度数
(2)求证:∠1=∠2
瓦甸科星化工有限公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.