初中数学

如图,直线的函数关系式为,且与x轴交于点D,直线经过定点A(4,0),B(-1,5),直线相交于点C,

(1)求直线的解析式;
(2)求△ADC的面积;
(3)在直线上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;
(4)在x轴上是否存在一点E,使得△BCE的周长最短,若存在请求出E点的坐标,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知甲、乙两地相距300km,小轿车从甲地出发驶往乙地,同时货车从相距乙地60km的入口A处驶往甲地(两车均在甲、乙两地之间的公路上匀速行驶),如图是它们离甲地的路程y(km)与货车行驶时间x(h)之间的函数的部分图像.

(1)求货车离甲地的路程y(km)与它行驶的时间x(h)的函数表达式;
(2)哪一辆车先到达目的地(小轿车达到乙地;货车到达甲地)?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明从兴化通过申通快递公司给在南京的朋友寄一盒苹果,快递时,他了解到申通快递公司除了收取每次6元的包装费外,苹果不超过2kg时收费22元,若超过2kg,则超过的部分按每千克10元收取费用,该公司从兴化到南京快递苹果的费用为y(元),小明所寄的苹果为x(kg)(x>2)
(1)求y与x的函数关系式;
(2)已知小明给朋友寄了2.5kg的苹果,请你求出这次快递的费用.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

用图像法求二元一次方程组的解.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知y与x-3成正比例,当x=4时,y=3;
(1)求y与x的函数式;
(2)当x=2时,求y的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一次函数y=kx+b的图像经过点A(0,2),点B(1,0)则不等式kx+b<0的解集为              

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知y与x成正比例,且当x=1时,y=0.5,则函数关系式是                  .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将直线y=3x+1平移向下平移4个单位,则平移后的解析式为            

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若点P(-1,m)是y=-x+1与y=kx+5的交点,则k的值是               

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若关于x,y的二元一次方程组的解是,则直线的交点坐标为(   )

A.(4,1) B.(1,4) C.(-4,1) D.(2,1)
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.
(1)求利润S(元)与销售单价x(元)之间的关系式;
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.
(1)当m=4时,如图②.若反比例函数y =的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;
(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示.
 
(1)试判断y与x之间的函数关系,并求出函数关系式.
(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式.
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)

(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.
(2)求渔船和渔政船相遇时,两船与钓鱼岛的距离.
(3)在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(直线y = kx+b平移时k不变)

(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定 t 的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值试题