初中数学

(1)解方程:4x2-8x-3=0
(2)求抛物线与x轴和y轴的交点坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于点A、B,连接AC、BC,得等边△ABC.T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动.设运动时间为t秒.

(1)求二次函数的解析式;
(2)设△TSC的面积为S,求S关于t的函数解析式;
(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点.
(1)请写出b、c的关系式;
(2)设直线y=7与该抛物线的交点为A、B,求AB的长;
(3)若P(a,﹣a)不在抛物线y=x2﹣2bx+c上,请求出b的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.

(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.

(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动.过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某公司营销A、B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与销售量x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.
信息2:销售B种产品所获利润y(万元)与销售量x(吨)之间存在正比例函数关系y=0.3x.
根据以上信息,解答下列问题;
(1)求二次函数解析式;
(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线
(1)填空:抛物线的顶点坐标是(       ),对称轴是          
(2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点 N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由. 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?
(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数的图象如图所示,根据图象解答下列问题:

(1)写出方程的两个根;
(2)当x为何值时,y>0;y<0?
(3)写出y随x的增大而减小的自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题8分)已知抛物线的图象经过点(﹣1,0),点(3,0);
(1)求抛物线函数解析式;(2)求函数的顶点坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标平面内,直线y=-x+5与轴和轴分别交于A、B两点,二次函数y=+bx+c的图象经过点A、B,且顶点为C.

(1)求这个二次函数的解析式;
(2)求sin∠OCA的值;
(3)若P是这个二次函数图象上位于x轴下方的一点,且ABP的面积为10,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数
(1)求它的顶点坐标和对称轴;
(2)画出这个函数的图象;
(3)根据图象回答:当取哪些值时,=0,>0,<0

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题