如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,顶点A的坐标为,点B在抛物线上.
(1)直角顶点C的坐标为 ;
(2)求抛物线的解析式;
(3)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD.当△BCD的面积最大时,求点D的坐标.
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.
已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为A(﹣1,0),另一交点为B,与y轴的交点坐标为C(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)求出顶点D的坐标以及S△BCD面积;
(3)根据图象,写出函数值y为正数时,自变量x的取值范围.
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
已知抛物线.
(1)求出这个抛物线的对称轴和顶点坐标;
(2)在给定的坐标系中画出这个抛物线,若抛物线与x轴交于A,B两点,与y轴交于点C,求△ABC的面积.
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取)
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)
已知二次函数(是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?
已知抛物线
(1)该抛物线的对称轴是 ,顶点坐标 ;
(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;
x |
… |
|
|
|
|
|
… |
y |
… |
|
|
|
|
|
… |
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.
如图,抛物线y =-x2+2x+3与x轴交于点A、B,与y轴交于点C,点D是抛物线的顶点,连接BC、BD.
(1)点D的坐标是 ;
(2)在抛物线的对称轴上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.
(3)若点P在x轴上且位于点B右侧,且点P是线段AQ的中点,连接QD,且∠BDQ=45°,求点P坐标(请利用备用图解决问题).
问题情境
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE= ,yF= ;
当m=3,n=5时,yE= ,yF= .
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用
(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.
进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.
(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;
(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;
(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?
如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于点A、B,连接AC、BC,得等边△ABC.T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动.设运动时间为t秒.
(1)求二次函数的解析式;
(2)设△TSC的面积为S,求S关于t的函数解析式;
(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.
已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点.
(1)请写出b、c的关系式;
(2)设直线y=7与该抛物线的交点为A、B,求AB的长;
(3)若P(a,﹣a)不在抛物线y=x2﹣2bx+c上,请求出b的取值范围.