如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于点A、B,连接AC、BC,得等边△ABC.T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动.设运动时间为t秒.(1)求二次函数的解析式;(2)设△TSC的面积为S,求S关于t的函数解析式;(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.
数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:特殊情况,探索结论 当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:(填“>”,“<”或“=”).特例启发,解答题目 解:题目中,与的大小关系是:(填“>”,“<”或“=”).理由如下:如图2,过点作,交于点. (请你完成以下解答过程)拓展结论,设计新题 在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).
2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了l 20千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.求A地经杭州湾跨海大桥到宁波港的路程.A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费为380元,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加l车时,每车的海上运费就减少20元.问这批货物有几车?
已知关于x的一元二次方程求证:无论取任何实数,方程总有实数根;若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长
如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.求证AD=AE;连接OA,BC,试判断直线OA,BC的位置关系并说明理由.
班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1)①这个班共有名学生,发言次数是5次的男生有人、女生有人; ②男、女生发言次数的中位数分别是次和次.通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数。