已知抛物线 (1)填空:抛物线的顶点坐标是( , ),对称轴是 ; (2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标; (3)在(2)的条件下,点M在直线AP上.在平面内是否存在点 N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.
如图,⊙O的直径AB为10,弦BC为6,D、E分别为ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由; (3)直接写出CD的长为____________.
如图,矩形OABC和ABEF,点B(3,4).(1)画出矩形OABC绕点O逆时针旋转后的矩形,并写出点的坐标为__________,点B运动到所经过的路径的长为_____________;(2)若点E的坐标为(5,2),则点F的坐标为___________.请画一条直线平分矩形OABC与ABEF组成的图形的面积(保留必要的画图痕迹)
袋中装有大小相同的2个红球和2个绿球(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球.① 求第一次摸到绿球,第二次摸到红球的概率 (请直接写出结果)② 求两次摸到的球中有1个绿球和1个红球的概率 (请直接写出结果)(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?(请用画出树形图或列表法求出结果)
如图,在⊙O中,,点D、E分别在半径OA和OB上,AD=BE.求证:CD=CE.
已知:写成的形式,求出图像与轴的交点,直接写出原抛物线与轴翻折后图像的解析式为____________________________.