初中数学

已知抛物线经过点A(,0)、B(m,0)(m>0),且与y轴交于点C.

⑴求a、b的值(用含m的式子表示)
⑵如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);
⑶在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与相似,求m的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,二次函数的图象经过点D,与x轴交于A、B两点.

⑴求的值;
⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.
(图②供选用)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分9分)
如图,已知二次函数的图象与x轴相交于点A、C,与y轴交于点B,A(,0),且△AOB~△BOC。

(1)求C点坐标、∠ABC的度数及二次函数的关系式;
(2)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

抛物线经过A(,0)、C(0,)两点,与轴交于另一点B。
(1)求此抛物线的解析式;
(2)已知点D()在第四象限的抛物线上,求点D关于直线BC对称的点,的坐标。
(3)在(2)的条件下,连结BD,问在轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某公司推出一款新型手机,投放市场以来前3个月的利润情况如图所示,该图可以近似看作抛物线的一部分。请结合图象,解答以下问题:

(1)求该抛物线对应的二次函数解析式;
(2)该公司在经营此款手机过程中,第几月的利润能达到24万元?
(3)若照此经营下去,请你结合所学的知识,对公司在此款手机的经营状况(是否亏损?何时亏损?)作预测分析

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函数的解析式为.

(1)写这个二次函数图象的对称轴和顶点坐标,并求图象与轴的交点坐标;
(2)在给定的坐标系中画出这个二次函数大致图象,并求出抛物线与坐标轴的交点所组成的三角形的面积

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小明从二次函数的图象(如图)中观察得到了下面五条信息:①; ②;③;④;⑤;你认为正确的信息是(     )

A.①②③⑤ B.①②③④ C.①③④⑤ D.②③④⑤
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

抛物线y=2x2-bx+3的对称轴是直线x=1,则b的值为_____

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,), 与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存  在,请求出点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.

(1)求C1点的坐标;
(2)求经过三点O、A、C1的抛物线的解析式;
(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF
的解析式;
(4)抛物线上是否存在一点M,使得.若存在,请求出点M的坐标;
若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某批发市场批发甲、乙两种水果,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),当为1吨时, 为1.4万元;当为2吨时, 为2.6万元.
(1)求出的值,并写出(万元)与(吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式,并写出的取值范围。
(3)在(2)的前提下,这两种水果各进多少吨时,获得的销售利润之和最大,最大利润是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,二次函数的表达式为.写出这个函数图象的对称轴和顶点坐标,并求图象与轴的交点的坐标

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

二次函数的图象与轴相交于点(-1,0)和(3,0),则它的对称轴是直线

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题