如图,已知二次函数的图象经过点(-1,0),(1,-2),当随的增大而增大时,的取值范围是 .
抛物线可以由抛物线平移得到,则下列平移过程正确的是( )
A.先向左平移2个单位,再向上平移3个单位 |
B.先向左平移2个单位,再向下平移3个单位 |
C.先向右平移2个单位,再向下平移3个单位 |
D.先向右平移2个单位,再向上平移3个单位 |
已知抛物线经过点和点P (t,0),且t ≠ 0
若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
若,求a、b的值,并指出此时抛物线的开口方向
直接写出使该抛物线开口向下的t的一个值
设函数y=kx2+(2k+1)x+1(k为实数).
写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两个特殊函数的图象
根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明
对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值
手工课时,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
当x是多少时,菱形风筝面积S最大?最大面积是多少?______.
(参考公式:当x=-时,二次函数y=ax2+bx+c(a≠0)有最小(大)值)
如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是______.(只要求填写正确命题的序号)
如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是_______
如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,你所确定的b的值是______
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
从上表可知,下列说法中正确的是______ .(填写序号)
①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;
③抛物线的对称轴是x=;④在对称轴左侧,y随x的增大而增大
在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是 ( )
A.y=-(x+1)2+2 | B.y=-(x-1)2+4 |
C.y=-(x-1)2+2 | D.y=-(x+1)2+4 |
已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是 ( )
A.a>0 | B.当x>1时,y随x的增大而增大 |
C.c<0 | D.3是方程ax2+bx+c=0的一个根 |
已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是 ( )
A.a>0 | B.b<0 | C.c<0 | D.a+b+c>0 |
已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点(-,y1)、(-,y2)、(-,y3),y1、y2、y3的大小关系是 ( )
A.y1<y2<y3 | B.y2<y1<y3 | C.y3<y1<y2 | D.y1<y3<y2 |
如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是( )
如图,抛物线经过、两点,与轴交于另一点.
求抛物线的解析式
已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;
在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.