初中数学

端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.

(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?

(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.

来源:2017年江西省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“ A 型”、“ B 型”、“ AB 型”、“ O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:

血型

A

B

AB

O

人数

  

10

5

  

(1)这次随机抽取的献血者人数为  人, m =   

(2)补全上表中的数据;

(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:

从献血者人群中任抽取一人,其血型是 A 型的概率是多少?并估计这3000人中大约有多少人是 A 型血?

来源:2018年湖南省郴州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,甲、乙两人(看成点)分别在数轴和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.

①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;

②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;

③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.

(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率

(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他最终停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值;

(3)从如图的位置开始,若进行了次移动游戏后,甲与乙的位置相距2个单位,直接写出的值.

来源:2020年河北省中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类: A :优秀; B :良好; C :一般; D :较差.并将调查结果绘制成以下两幅不完整的统计图.

请根据统计图解答下列问题:

(1)本次调查中,杨老师一共调查了        名学生,其中 C 类女生有      名, D 类男生有           名;

(2)补全上面的条形统计图和扇形统计图;

(3)在此次调查中,小平属于 D 类.为了进步,她请杨老师从被调查的 A 类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.

来源:2018年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

编号为号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为

(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;

(2)在这6名学生中,随机选一名学生,求选上命中率高于的学生的概率;

(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.

来源:2017年河北省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为: A .唐诗; B .宋词; C .论语; D .三字经.比赛形式分“单人组”和“双人组”.

(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?

(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.

来源:2017年湖南省衡阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形 ABCD 顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.

如:若从圈 A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈 D ;若第二次掷得2,就从 D 开始顺时针连续跳2个边长,落到圈 B

设游戏者从圈 A 起跳.

(1)嘉嘉随机掷一次骰子,求落回到圈 A 的概率 P 1

(2)淇淇随机掷两次骰子,用列表法求最后落回到圈 A 的概率 P 2 ,并指出她与嘉嘉落回到圈 A 的可能性一样吗?

来源:2016年河北省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.

(1)若前四局双方战成 2 : 2 ,那么甲队最终获胜的概率是  

(2)现甲队在前两局比赛中已取得 2 : 0 的领先,那么甲队最终获胜的概率是多少?

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).

(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是  

(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.

(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为   

(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请根据画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.

(1)甲坐在①号座位的概率是    

(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为 P

(1)直接写出甲家庭选择到大理旅游的概率;

(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求 P 的值.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将图中的 A 型、 B 型、 C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.

(1)搅匀后从中摸出1个盒子,求摸出的盒子中是 A 型矩形纸片的概率;

(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.

(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;

(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率 P

来源:2016年云南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图, 3 × 3 的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格 A B C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格 D E F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.

(1)若乙固定在 E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是  

(2)若甲、乙均可在本层移动.

①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.

②黑色方块所构拼图是中心对称图形的概率是  

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学概率公式解答题