如图, 3 × 3 的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格 A 、 B 、 C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格 D 、 E 、 F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在 E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是 .
已知 a , b , c 为正整数,且 3 a + b 3 b + c 为有理数,证明: a 2 + b 2 + c 2 a + b + c 为整数.
若有理数 x , y , z 满足 x + y - 1 + z - 2 = 1 2 x + y + z ,试确定 x - y z 3 的值.
若 m 满足关系式 3 x + 5 y - 2 - m + 2 x + 3 y - m = x + y - 1 ⋅ 1 - x - y ,求 m 的值.
已知 ( a - 2 ) 2 + ab - 6 = 0 ,求 1 ab + 1 ( a + 1 )( b + 1 ) + 1 ( a + 2 )( b + 2 ) + ⋯ 1 ( a + 2019 )( b + 2019 ) + 1 ( a + 2020 )( b + 2020 ) 的值.
设 S 1 = 1 + 1 1 2 + 1 2 2 , S 2 = 1 + 1 2 2 + 1 3 2 , S 3 = 1 + 1 3 2 + 1 4 2 , ⋯ , S n = 1 + 1 n 2 + 1 ( n + 1 ) 2 ,求 S 1 + S 2 + ⋯ + S n 的值.(用含 n 的代数式表示,其中 n 为正整数)