如图,海上
两岛分别位于
岛的正东和正北方向,一艘船从
岛出发,以18海里/时的速度向正北方向航行2小时到达
岛,此时测得
岛在
岛的南偏东
,求
两岛之间的距离.(结果精确到0.1海里)
【参考数据:】
如图所示:与的边相切于点,与、分别交于点、,.是的直径.连接,过作交于,连接、,与交于点.
(1)求证:直线与相切;
(2)求证:;
(3)若,时,过作交于、两点在线段上),求的长.
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,tan A=,AD=20.求BC的长.
莘县旅游资源丰富,其中燕塔是莘县著名旅游景点(如图①).一天身高1.5m的小明从A处仰视观看燕塔顶部,其仰角为30°.小明又向西走了30m,∠APB=15°(如图②).请你帮小明算出雁塔的高度.(结果保留一位小数,参考数据:≈1.41,≈1.73)
如图,已知 是 的直径,过 点作 ,交弦 于点 ,交 于点 ,且使 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.
如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.
(1)求BC的长;
(2)求tan∠DAE的值.
如图,在正方形 中,点 在对角线 上(不与点 , 重合), 于点 , 于点 ,连接 .
(1)写出线段 , , 长度之间的数量关系,并说明理由;
(2)若正方形 的边长为1, ,求线段 的长.
如图, 已知四边形 是菱形, 于点 , 于点 .
(1) 求证: ;
(2) 若 , ,求 的值 .
如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
如图,AB是⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由;
(2)若cosB=,AP=1,求QC的长.
如图, 是 的直径, 切 于点 ,连接 ,作 交 于点 , 的延长线与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 的半径为1, ,求 的长.
如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.
(1)求海盗船所在C处距货轮航线AB的距离.
(2)若货轮以45海里/时的速度在A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)
如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的高度.她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1∶1的斜坡步行15分钟到达C处,此时,测得点A的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出娱乐场地所在山坡AE的高度AB.(精确到0.1米,参考数据:≈1.41).