初中数学

如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.

(1)求BC的长;
(2)求tan∠DAE的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

先化简,再求值. , 其中  x=tan600+2 .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 G 在对角线 BD 上(不与点 B D 重合), GE DC 于点 E GF BC 于点 F ,连接 AG

(1)写出线段 AG GE GF 长度之间的数量关系,并说明理由;

(2)若正方形 ABCD 的边长为1, AGF = 105 ° ,求线段 BG 的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, 已知四边形 ABCD 是菱形, DF AB 于点 F BE CD 于点 E

(1) 求证: AF = CE

(2) 若 DE = 2 BE = 4 ,求 sin DAF 的值 .

来源:2017年湖南省永州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,某中学操场边有一旗杆A,小明在操场的C处放风筝,风筝飞在图中的D处,在CA的延长线上离小明30米远的E处的小刚发现自己的位置与风筝D和旗杆的顶端B在同一条直线上,小刚在E处测得旗杆顶点B的仰角为,且tan=,小明在C处测得旗杆顶点B的仰角为45°.

(1)求旗杆的高度.
(2)此时,在C处背向旗杆,测得风筝D的仰角(即∠DCF)为48°,求风筝D离地面的距离.(结果精确到0.1米,其中sin48°≈0.74, cos48°≈0.67,tan48°≈1.11)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系 Oxy 中,等腰 ΔOAB 的边 OB 与反比例函数 y = m x ( m > 0 ) 的图象相交于点 C ,其中 OB = AB ,点 A x 轴的正半轴上,点 B 的坐标为 ( 2 , 4 ) ,过点 C CH x 轴于点 H

(1)已知一次函数的图象过点 O B ,求该一次函数的表达式;

(2)若点 P 是线段 AB 上的一点,满足 OC = 3 AP ,过点 P PQ x 轴于点 Q ,连结 OP ,记 ΔOPQ 的面积为 S ΔOPQ ,设 AQ = t T = O H 2 - S ΔOPQ

①用 t 表示 T (不需要写出 t 的取值范围);

②当 T 取最小值时,求 m 的值.

来源:2019年湖南省株洲市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.

(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由;
(2)若cosB=,AP=1,求QC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图, CE O 的直径, BC O 于点 C ,连接 OB ,作 ED / / OB O 于点 D BD 的延长线与 CE 的延长线交于点 A

(1)求证: AB O 的切线;

(2)若 O 的半径为1, tan DEO = 2 ,求 AE 的长.

来源:2018年贵州省黔东南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.

(1)求海盗船所在C处距货轮航线AB的距离.
(2)若货轮以45海里/时的速度在A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的高度.她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1∶1的斜坡步行15分钟到达C处,此时,测得点A的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出娱乐场地所在山坡AE的高度AB.(精确到0.1米,参考数据:≈1.41).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = = 2 AD = 3 P BC 边上的一点,且 BP = 2 CP

(1)用尺规在图①中作出 CD 边上的中点 E ,连接 AE BE (保留作图痕迹,不写作法);

(2)如图②,在(1)的条件下,判断 EB 是否平分 AEC ,并说明理由;

(3)如图③,在(2)的条件下,连接 EP 并延长交 AB 的延长线于点 F ,连接 AP ,不添加辅助线, ΔPFB 能否由都经过 P 点的两次变换与 ΔPAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求sinB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①, 在 Rt Δ ABC 中, 以下是小亮探究 a sin A b sin B 之间关系的方法:

sin A = a c sin B = b c

c = a sin A c = b sin B

a sin A = b sin B

根据你掌握的三角函数知识 . 在图②的锐角 ΔABC 中, 探究 a sin A b sin B c sin C 之间的关系, 并写出探究过程 .

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题