如图,在 中, , 是 的平分线,以 为直径的 交 边于点 ,连接 ,过点 作 ,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求线段 的长.
如图,将三角形纸片 ABC折叠,使点 B、 C都与点 A重合,折痕分别为 DE、 FG.已知 , , ,则 BC的长为 .
如图,四边形 是菱形,对角线 , 相交于点 , , ,点 是 上一动点,点 是 的中点,则 的最小值为
A. |
|
B. |
|
C. |
3 |
D. |
|
如图,在 中, 是直径,弦 ,垂足为 , 为 上一点, 为弦 延长线上一点,连接 并延长交直径 的延长线于点 ,连接 交 于点 ,若 .
(1)求证: 是 的切线;
(2)若 的半径为8, ,求 的长.
如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径 ,根据我国魏晋时期数学家刘徽的"割圆术"思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计 的值,下面 及 的值都正确的是
A. |
, |
B. |
, |
C. |
, |
D. |
, |
如图,在 中, ,延长 到点 ,以 为直径作 ,交 的延长线于点 ,延长 到点 ,使 .
(1)求证: 是 的切线;
(2)若 , , ,求 的长.
如图,已知锐角 中, .
(1)请在图1中用无刻度的直尺和圆规作图:作 的平分线 ;作 的外接圆 ;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若 , 的半径为5,则 .(如需画草图,请使用图
如图,在 中, , , ,点 在线段 上,且 , 是线段 上的一点,连接 ,把四边形 沿直线 翻折,得到四边形 ,当点 恰好落在线段 上时, .
如图,在 中, ,以点 为圆心, 为半径的圆交 于点 ,点 在边 上,且 .
(1)判断直线 与 的位置关系,并说明理由;
(2)已知 , ,求 的半径.
如图,四边形 内接于 , ,延长 到点 ,使得 ,连接 .
(1)求证: ;
(2)若 , , ,求 的值.