如图,在菱形中,,点,分别在边、上,将四边形沿翻折,使的对应线段经过顶点,当时,的值是 .
如图,将 沿着过 的中点 的直线折叠,使点 落在 边上的 处,称为第一次操作,折痕 到 的距离为 ;还原纸片后,再将 沿着过 的中点 的直线折叠,使点 落在 边上的 处,称为第二次操作,折痕 到 的距离记为 ;按上述方法不断操作下去 经过第 次操作后得到折痕 ,到 的距离记为 .若 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,正方形 在宽为2的矩形纸片一端,对折正方形 得到折痕 ,再翻折纸片,使 与 重合,以下结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在边长为 的菱形 中, ,过点 作 于点 ,现将 沿直线 翻折至 的位置, 与 交于点 .则 等于
A. |
|
B. |
1 |
C. |
|
D. |
|
如图,抛物线为常数)交轴于点,与轴的一个交点在2和3之间,顶点为.
①抛物线与直线有且只有一个交点;
②若点、点,、点在该函数图象上,则;
③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;
④点关于直线的对称点为,点、分别在轴和轴上,当时,四边形周长的最小值为.
其中正确判断的序号是 .
如图,把某矩形纸片沿,折叠(点,在边上,点,在边上),使点和点落在边上同一点处,点的对称点为点,点的对称点为点,若,△的面积为4,△的面积为1,则矩形的面积等于 .
如图,在 中, , , 于点 , 于点 , .连接 ,将 沿直线 翻折至 所在的平面内,得 ,连接 .过点 作 交 于点 .则四边形 的周长为
A. |
8 |
B. |
|
C. |
|
D. |
|
如图,在 中, 是 边上的中点,连结 ,把 沿 翻折,得到 , 与 交于点 ,连结 ,若 , ,则点 到 的距离为
A. |
|
B. |
|
C. |
|
D. |
|
如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为、,得到,若厘米,则的边的长为 厘米.
如图,正方形中,,点是对角线上一点,连接,过点作,交于点,连接,交于点,将沿翻折,得到,连接,交于点,若点是边的中点,则的周长是 .