在 中,已知 , , .如图所示,将 绕点 按逆时针方向旋转 后得到△ .则图中阴影部分面积为
A. B. C. D.
一次函数 的图象与 轴的负半轴相交于点 ,与 轴的正半轴相交于点 ,且 . 的外接圆的圆心 的横坐标为 .
(1)求一次函数的解析式;
(2)求图中阴影部分的面积.
如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是
A. B. C. D.
如图, 为 的直径, 为 上一点, ,延长 至点 ,使得 ,过点 作 ,垂足 在 的延长线上,连接 .
(1)求证: 是 的切线;
(2)当 时,求图中阴影部分的面积.
如图,在 中,半径 ,过点 的中点 作 交 于 、 两点,且 ,以 为圆心, 为半径作 ,交 于 点.
(1)求 的半径 的长;
(2)计算阴影部分的面积.
如图,矩形 中, 是 上一点,连接 ,将矩形沿 翻折,使点 落在 边 处,连接 ,在 上取点 ,以 为圆心, 长为半径作 与 相切于点 .若 , ,则下列结论:① 是 的中点;② 的半径是2;③ ;④ .其中正确结论的序号是 .
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中, 的三个顶点 、 、 均在格点上.
(1)画出 关于 轴对称的△ ,并写出点 的坐标;
(2)画出 绕原点 顺时针旋转 后得到的△ ,并写出点 的坐标;
(3)在(2)的条件下,求线段 在旋转过程中扫过的面积(结果保留 .
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中, 的三个顶点 、 、 均在格点上.
(1)画出 关于 轴对称的△ ,并写出点 的坐标;
(2)画出 绕原点 顺时针旋转 后得到的△ ,并写出点 的坐标;
(3)在(2)的条件下,求线段 在旋转过程中扫过的面积(结果保留 .
如图,在正方形 中,边长 ,将正方形 绕点 按逆时针方向旋转 至正方形 ,则线段 扫过的面积为
A. B. C. D.