如图1,的直径,是弦上一动点(与点,不重合),,过点作交于点.
(1)如图2,当时,求的长;
(2)如图3,当时,延长至点,使,连接.
①求证:是的切线;
②求的长.
如图, 内接于 , 是直径, ,在 的内部作 ,且 ,过点 作 于点 ,连接 .
(1)若 交 于点 , 的半径是4,求 的长;
(2)请判断直线 与 的位置关系,并说明理由.
如图,已知平行四边形 的三个顶点 、 、 在以 为圆心的半圆上,过点 作 ,分别交 、 的延长线于点 、 , 交半圆 于点 ,连接 .
(1)判断直线 与半圆 的位置关系,并说明理由;
(2)①求证: ;
②若半圆 的半径为12,求阴影部分的周长.
如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.
如图,在平面直角坐标系中, 的斜边 在 轴上,边 与 轴交于点 , 平分 交边 于点 ,经过点 、 、 的圆的圆心 恰好在 轴上, 与 轴相交于另一点 .
(1)求证: 是 的切线;
(2)若点 、 的坐标分别为 , ,求 的半径;
(3)试探究线段 、 、 三者之间满足的等量关系,并证明你的结论.
(年云南省昆明市)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.
(1)求证:直线FG是⊙O的切线;
(2)若CD=10,EB=5,求⊙O的直径.
如图, , 是 上两点,且 ,连接 并延长到点 ,使 ,连接 .
(1)求证: 是 的切线;
(2)点 , 分别是 , 的中点, 所在直线交 于点 , , ,求 的长.
已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(要求写出两种情况): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
如图,在 中, ,以 为直径的 交 于点 , 交 的延长线于点 ,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,四边形 中,连接 , ,以 为直径的 过点 ,交 于点 ,过点 作 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.(结果保留
如图,在半径为 的 中, 是 的直径, 是过 上一点 的直线,且 于点 , 平分 , 是 的中点, .
(1)求证: 是 的切线;
(2)求 的长.
如图,在 中, , , ,以 为直径作 交 于点 .
(1)求线段 的长度;
(2)点 是线段 上的一点,试问:当点 在什么位置时,直线 与 相切?请说明理由.
如图, 是 的内接三角形, 是 的直径, ,交 于点 ,点 在 的延长线上,射线 经过点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分的面积.(结果保留 和根号).
如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的圆O经过点D
(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积(结果保留根号和π).