如图,在中,,是上一点,经过点、、,交于点,过点作,交于点.
求证:(1)四边形是平行四边形;
(2).
定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点,,在上,的平分线交于点,连接,.
求证:四边形是等补四边形;
探究:
(2)如图2,在等补四边形中,,连接,是否平分?请说明理由.
运用:
(3)如图3,在等补四边形中,,其外角的平分线交的延长线于点,,,求的长.
四边形 是 的圆内接四边形,线段 是 的直径,连结 、 .点 是线段 上的一点,连结 、 ,且 , , 的延长线与 的延长线相交于点 .
(1)求证:四边形 是平行四边形;
(2)若 , ,
①求证: 为等腰直角三角形;
②求 的长度.
如图,在中,是斜边的中点,以为直径作圆交于点,延长至,使,连接、,交圆于点.
(1)判断四边形的形状,并说明理由;
(2)求证:;
(3)若,,求的长.
在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.
(1)观察猜想
如图1,当时,的值是 ,直线与直线相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值.
如图,在 中, ,点 是 的中点,以 为直径作 分别交 , 于点 , .
(1)求证: ;
(2)填空:
①若 ,当 时, ;
②连接 , ,当 的度数为 时,四边形 是菱形.
如图, 内接于圆 ,且 ,延长 到点 ,使 ,连接 交圆 于点 .
(1)求证: ;
(2)填空:
①当 的度数为 时,四边形 是菱形.
②若 , ,则 的长为 .
如图,已知一张长方形纸片ABCD,AB∥CD ,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)请你动手操作,判断△MNK的形状一定是 ;
(2)问△MNK的面积能否小于?试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
如图,平行四边形ABCD(两组对边平行且相等)的边长AB=4,BC=2,若把它放在直角坐标系内,使AB在x轴上,点C在y轴上,点A的坐标是(-3,0),求点B、C、D的坐标.
如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)并请说明画出的线为什么平分∠AOB?
如图,在平面直角坐标系中,直线y=0.5x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD,过点D作DE⊥x轴,垂足为E.
(1)求点A、B的坐标,并求边AB的长;
(2)求点D的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.
在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.