如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且 ,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6, ,求弦BD的长.
如图,在⊙ O中, B是⊙ O上的一点,∠ ABC=120°,弦 AC=2 ,弦 BM平分∠ ABC交 AC于点 D,连接 MA, MC.
(1)求⊙ O半径的长;
(2)求证: AB+ BC= BM.
如图,在△ ABC中,∠ ABC=90°,以 AB的中点 O为圆心, OA为半径的圆交 AC于点 D, E是 BC的中点,连结 DE、 OE.
(1)判断 DE与⊙ O的位置关系,并说明理由.
(2)求证: BC 2=2 CD• OE.
如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.
(1)求证:DF是⊙O的切线;
(2)求证:OC2=OE•OP;
(3)求线段EG的长.
如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.
(1)求⊙O的半径;
(2)点E为圆上一点,∠ECD=15°,将 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.
如图,已知⊙ O的直径为 AB, AC⊥ AB于点 A, BC与⊙ O相交于点 D,在 AC上取一点 E,使得 ED= EA.
(1)求证: ED是⊙ O的切线;
(2)当 OE=10时,求 BC的长.
如图,在平面直角坐标系中, O(0,0), A(0,﹣6), B(8,0)三点在⊙ P上, M为劣弧的 中点.
(1)求圆的半径及圆心 P的坐标;
(2)求证: AM是∠ OAB的平分线;
(3)连接 BM并延长交 y轴于点 N,求 N, M点的坐标.
我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点在以(南北方向)为直径的上,,交于点,垂足为,,弦、分别交于点、,且.
(1)比较 与 的大小;
(2)若,求证:;
(3)设直线、相交所成的锐角为,试确定时,点的位置.
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.
如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.
求证:(1)△ACO≌△BDO;(2)CE=DF.
如图,已知⊙ O的半径为2, AB为直径, CD为弦. AB与 CD交于点 M,将 沿 CD翻折后,点 A与圆心 O重合,延长 OA至 P,使 AP= OA,连接 PC
(1)求 CD的长;
(2)求证: PC是⊙ O的切线;
(3)点 G为 的中点,在 PC延长线上有一动点 Q,连接 QG交 AB于点 E.交 于点 F( F与 B、 C不重合).问 GE• GF是否为定值?如果是,求出该定值;如果不是,请说明理由.
如图, 是 的外接圆,直线 与 相切于点 , ,连接 交 于点 .
(1)求证: 平分 ;
(2)若 的平分线 交 于点 ,且 , ,求 的长.
如图, 是 的直径, 是 的弦, 交 于点 ,连接 , ,过点 作 ,垂足为 , .
(1)求证: ;
(2)点 在 的延长线上,连接 , .
①求证: 与 相切;
②当 , 时,直接写出 的长.