如图,在□ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H。
(1)求证:△BAE∽△BCF
(2)若BG=BH,求证四边形ABCD是菱形
如图:把一张给定大小的长方形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=32°,求长方形卡片的周长。
(参考数据 sin32°≈0.5 cos32°≈0.8 tan32°≈0.6)
(本小题满分8分)
如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
已知:如图,E,F分别是ABCD的边AD,BC的中点.求证:AF=CE.
如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.
求证:∠EBF=∠FDE.
(本小题满分8分)
已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
如图,在梯形ABCD中,AB∥CD
(1)用尺规作图方法,作∠DAB的角平分线AF(只保留作图痕迹,不写作法和证明)
(2)若AF交CD边于点E,判断△ADE的形状(只写结果)
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
.(10分)如图9,正方形ABCD边长为10cm,P、Q分别是BC、CD上的两个动点,当P 点在BC上运动时,且A P⊥PQ.
(1)求证:△ABP∽△PCQ;
(2)当BP等于多少时,四边形ABCQ的面积为62cm2.
如图7,一个农户用24m长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个矩形鸡舍.
要使这三个鸡舍的总面积为36m2,求每个鸡舍的长和宽各是多少.
问题探究
(1)请在图①的正方形内,画出使的一个点,并说明理由.
(2)请在图②的正方形内(含边),画出使的所有的点,并说明理由.
问题解决
(3)如图③,现在一块矩形钢板.工人师傅想用它裁出两块全等的、面积最大的和钢板,且.请你在图③中画出符合要求的点和,并求出的面积(结果保留根号).