能够完全重合的平行四边形纸片 和 按图①方式摆放,其中 , .点 , 分别在边 , 上, 与 相交于点 .
【探究】求证:四边形 是菱形.
【操作一】固定图①中的平行四边形纸片 ,将平行四边形纸片 绕着点 顺时针旋转一定的角度,使点 与点 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 .
【操作二】将图②中的平行四边形纸片 绕着点 继续顺时针旋转一定的角度,使点 与点 重合,连接 , ,如图③,若 ,则四边形 的面积为 .
【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.
1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?
【问题解决】如图①,已知矩形纸片 ,将矩形纸片沿过点 的直线折叠,使点 落在边 上,点 的对应点为 ,折痕为 ,点 在 上.求证:四边形 是正方形.
【规律探索】由【问题解决】可知,图①中的△ 为等腰三角形.现将图①中的点 沿 向右平移至点 处(点 在点 的左侧),如图②,折痕为 ,点 在 上,点 在 上,那么 还是等腰三角形吗?请说明理由.
[结论应用]在图②中,当 时,将矩形纸片继续折叠如图③,使点 与点 重合,折痕为 ,点 在 上.要使四边形 为菱形,则 .
如图1,已知点 在四边形 的边 上,且 , 平分 ,与 交于点 , 分别与 、 交于点 、 .
(1)求证: ;
(2)如图2,若 ,求 的值;
(3)当四边形 的周长取最大值时,求 的值.
【感知】如图①,在四边形 中, ,点 在边 上, ,求证: .
【探究】如图②,在四边形 中, ,点 在边 上,点 在边 的延长线上, ,且 ,连接 交 于点 .
求证: .
【拓展】如图③,点 在四边形 内, 十 ,且 ,过 作 交 于点 ,若 ,延长 交 于点 .求证: .
如图,正方形 的边长为6, 为 的中点, 为等边三角形,过点 作 的垂线分别与边 、 相交于点 、 ,点 、 分别在线段 、 上运动,且满足 ,连接 .
(1)求证: .
(2)当点 在线段 上时,试判断 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.
(3)设 ,点 关于 的对称点为 ,若点 落在 的内部,试写出 的范围,并说明理由.
【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形 中, , , ,连接 .若 ,求 的值;
(2)如图②,凸四边形 中, , ,当 时,判断四边形 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 , , ,四边形 是对余四边形,点 在对余线 上,且位于 内部, .设 ,点 的纵坐标为 ,请直接写出 关于 的函数解析式.
(1)如图1,点为矩形对角线上一点,过点作,分别交、于点、.若,,的面积为,的面积为,则 ;
(2)如图2,点为内一点(点不在上),点、、、分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(3)如图3,点为内一点(点不在上),过点作,,与各边分别相交于点、、、.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(4)如图4,点、、、把四等分.请你在圆内选一点(点不在、上),设、、围成的封闭图形的面积为,、、围成的封闭图形的面积为,的面积为,的面积为,根据你选的点的位置,直接写出一个含有、、、的等式(写出一种情况即可).
如图1,在矩形 中, , ,动点 , 分别从 点, 点同时以每秒1个单位长度的速度出发,且分别在边 , 上沿 , 的方向运动,当点 运动到点 时, , 两点同时停止运动.设点 运动的时间为 ,连接 ,过点 作 , 与边 相交于点 ,连接 .
(1)如图2,当 时,延长 交边 于点 .求证: ;
(2)在(1)的条件下,试探究线段 , , 三者之间的等量关系,并加以证明;
(3)如图3,当 时,延长 交边 于点 ,连接 ,若 平分 ,求 的值.
定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.
根据以上定义,解决下列问题:
(1)如图1,正方形 中, 是 上的点,将 绕 点旋转,使 与 重合,此时点 的对应点 在 的延长线上,则四边形 为"直等补"四边形,为什么?
(2)如图2,已知四边形 是"直等补"四边形, , , ,点 到直线 的距离为 .
①求 的长;
②若 、 分别是 、 边上的动点,求 周长的最小值.
问题背景:如图1,在四边形 中, , , , , , 绕 点旋转,它的两边分别交 、 于 、 .探究图中线段 , , 之间的数量关系.
小李同学探究此问题的方法是:延长 到 ,使 ,连接 ,先证明 ,再证明 ,可得出结论,他的结论就是 ;
探究延伸1:如图2,在四边形 中, , , , , 绕 点旋转.它的两边分别交 、 于 、 ,上述结论是否仍然成立?请直接写出结论(直接写出"成立"或者"不成立" ,不要说明理由;
探究延伸2:如图3,在四边形 中, , , , 绕 点旋转.它的两边分别交 、 于 、 .上述结论是否仍然成立?并说明理由;
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心 处)北偏西 的 处.舰艇乙在指挥中心南偏东 的 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里 小时的速度前进,同时舰艇乙沿北偏东 的方向以100海里 小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达 、 处.且指挥中心观测两舰艇视线之间的夹角为 .试求此时两舰艇之间的距离.
如图1,平面直角坐标系 中,等腰 的底边 在 轴上, ,顶点 在 的正半轴上, ,一动点 从 出发,以每秒1个单位的速度沿 向左运动,到达 的中点停止.另一动点 从点 出发,以相同的速度沿 向左运动,到达点 停止.已知点 、 同时出发,以 为边作正方形 ,使正方形 和 在 的同侧,设运动的时间为 秒 .
(1)当点 落在 边上时,求 的值;
(2)设正方形 与 重叠面积为 ,请问是否存在 值,使得 ?若存在,求出 值;若不存在,请说明理由;
(3)如图2,取 的中点 ,连结 ,当点 、 开始运动时,点 从点 出发,以每秒 个单位的速度沿 运动,到达点 停止运动.请问在点 的整个运动过程中,点 可能在正方形 内(含边界)吗?如果可能,求出点 在正方形 内(含边界)的时长;若不可能,请说明理由.
如图1,在等腰直角三角形 中, , .点 是 的中点,以 为边作正方形 ,连接 , .将正方形 绕点 顺时针旋转,旋转角为 .
(1)如图2,在旋转过程中,
①判断 与 是否全等,并说明理由;
②当 时, 与 交于点 ,求 的长.
(2)如图3,延长 交直线 于点 .
①求证: ;
②在旋转过程中,线段 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
如图,四边形是正方形,点为对角线的中点.
(1)问题解决:如图①,连接,分别取,的中点,,连接,则与的数量关系是 ,位置关系是 ;
(2)问题探究:如图②,△是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.判断的形状,并证明你的结论;
(3)拓展延伸:如图③,△是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.若正方形的边长为1,求的面积.
如图,在平面直角坐标系中,矩形的边长是的根,连接,,并过点作,垂足为,动点从点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为秒.
(1)线段 ;
(2)连接和,求的面积与运动时间的函数关系式;
(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.