如图,已知是一个锐角,以点为圆心,任意长为半径画弧,分别交、于点、,再分别以点、为圆心,大于长为半径画弧,两弧交于点,画射线.过点作,交射线于点,过点作,交于点.设,,则 .
如图,在四边形中,,对角线的垂直平分线与边、分别相交于点、.
(1)求证:四边形是菱形;
(2)若,,求菱形的周长.
某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为 ,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.
如图1所示,一张纸条水平放置不动,另一张纸条与它成 的角,将该纸条从右往左平移.
(1)写出在平移过程中,重叠部分可能出现的形状.
(2)当重叠部分的形状为如图2所示的四边形 时,求证:四边形 是菱形.
(3)设平移的距离为 ,两张纸条重叠部分的面积为 .求 与 的函数关系式,并求 的最大值.
如图,在菱形 中,将对角线 分别向两端延长到点 和 ,使得 .连接 , , , .
求证:四边形 是菱形.
菱形 的对角线 , 相交于点 , ,点 是射线 上一个动点,过点 作 交射线 于点 ,以 , 为邻边作矩形 .
(1)如图1,当点 在线段 上时,求证: ;
(2)若延长 与边 交于点 ,将 沿直线 翻折 得到 .
①如图2,当点 在 上时,求证:四边形 为正方形;
②如图3,当 为定值 时,设 , 为大于0的常数,当且仅当 时,点 在矩形 的外部,求 的值.
如图1,抛物线与抛物线相交轴于点,抛物线与轴交于、两点(点在点的右侧),直线交轴负半轴于点,交轴于点,且.
(1)求抛物线的解析式与的值;
(2)抛物线的对称轴交轴于点,连接,在轴上方的对称轴上找一点,使以点,,为顶点的三角形与相似,求出的长;
(3)如图2,过抛物线上的动点作轴于点,交直线于点,若点是点关于直线的对称点,是否存在点(不与点重合),使点落在轴上?若存在,请直接写出点的横坐标,若不存在,请说明理由.
如图,矩形纸片 中, , .将纸片折叠,使点 落在边 的延长线上的点 处,折痕为 ,点 、 分别在边 和边 上.连接 ,交 于点 , 交 于点 .给出以下结论:
① ;
② ;
③ 和 的面积相等;
④当点 与点 重合时, ,
其中正确的结论共有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图, 中, .
(1)作点 关于 的对称点 ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 , ,连接 ,交 于点 .
①求证:四边形 是菱形;
②取 的中点 ,连接 ,若 , ,求点 到 的距离.
如图,先有一张矩形纸片,,,点,分别在矩形的边,上,将矩形纸片沿直线折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.下列结论:
①;
②四边形是菱形;
③,重合时,;
④的面积的取值范围是.
其中正确的是 (把正确结论的序号都填上).
如图,矩形中,,,点是对角线的中点,过点的直线分别交、边于点、.
(1)求证:四边形是平行四边形;
(2)当时,求的长.
如图,四边形 ABCD的对角线相交于点 O,且点 O是 BD的中点,若 AB= AD=5, BD=8,∠ ABD=∠ CDB,则四边形 ABCD的面积为( )
A. |
40 |
B. |
24 |
C. |
20 |
D. |
15 |
如图,在中,是斜边的中点,以为直径作圆交于点,延长至,使,连接、,交圆于点.
(1)判断四边形的形状,并说明理由;
(2)求证:;
(3)若,,求的长.
如图,将沿着边翻折,得到,且.
(1)判断四边形的形状,并说明理由;
(2)若,,求四边形的面积.
规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若、的坐标分别为,,是二次函数的图象上在第一象限内的任意一点,垂直直线于点,则四边形是广义菱形.其中正确的是 .(填序号)