初中数学

如图,在 ΔABC 中, AB = AC D E F 分别为 AB BC AC 的中点,则下列结论:① ΔADF ΔFEC ,②四边形 ADEF 为菱形,③ S ΔADF : S ΔABC = 1 : 4 .其中正确的结论是  .(填写所有正确结论的序号)

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

请阅读下列材料,并完成相应的任务:

在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形两边上分别取一点,使得.(如图)解决这个问题的操作步骤如下:

第一步,在上作出一点,使得,连接.第二步,在上取一点,作,交于点,并在上取一点,使.第三步,过点,交于点.第四步,过点,交于点,再过点,交于点

则有

下面是该结论的部分证明:

证明:

同理可得

任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形的形状,并加以证明;

(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成的证明过程;

(3)上述解决问题的过程中,通过作平行线把四边形放大得到四边形,从而确定了点的位置,这里运用了下面一种图形的变化是  

.平移             .旋转            .轴对称           .位似

来源:2018年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图, A B C O 上的三点,且四边形 OABC 是菱形.若点 D 是圆上异于 A B C 的另一点,则 ADC 的度数是       

来源:2017年湖北省荆州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在等边三角形中,,点为边的中点,点为边上的任意一点(不与点重合),若点关于直线的对称点恰好落在等边三角形的边上,则的长为  

来源:2017年河南省中考数学试卷(备用卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BC = 2 AB = 4 ,点 E F 分别是 BC AD 的中点.

(1)求证: ΔABE ΔCDF

(2)当四边形 AECF 为菱形时,求出该菱形的面积.

来源:2016年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图①,是矩形的对角线,.将沿射线方向平移到△的位置,使中点,连接,如图②.

(1)求证:四边形是菱形;

(2)四边形的周长为  

(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.

来源:2017年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,已知线段 AB ,分别以 A B 为圆心,大于 1 2 AB 同样长为半径画弧,两弧交于点 C D ,连接 AC AD BC BD CD ,则下列说法错误的是 (    )

A. AB 平分 CAD B. CD 平分 ACB C. AB CD D. AB = CD

来源:2020年浙江省台州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在四边形中,为一条对角线,的中点,连接

(1)求证:四边形为菱形;

(2)连接,若平分,求的长.

来源:2017年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图, AC = 8 ,分别以 A C 为圆心,以长度5为半径作弧,两条弧分别相交于点 B D .依次连接 A B C D ,连接 BD AC 于点 O

(1)判断四边形 ABCD 的形状并说明理由;

(2)求 BD 的长.

来源:2019年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形, E F 分别是线段 AD BC 上的点,点 O EF BD 的交点.若将 ΔBED 沿直线 BD 折叠,则点 E 与点 F 重合.

(1)求证:四边形 BEDF 是菱形;

(2)若 ED = 2 AE AB AD = 3 3 ,求 EF BD 的值.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC

(1)以点 A 为圆心,以适当长为半径画弧,交 AC 于点 M ,交 AB 于点 N

(2)分别以 M N 为圆心,以大于 1 2 MN 的长为半径画弧,两弧在 BAC 的内部相交于点 P

(3)作射线 AP BC 于点 D

(4)分别以 A D 为圆心,以大于 1 2 AD 的长为半径画弧,两弧相交于 G H 两点.

(5)作直线 GH ,交 AC AB 分别于点 E F

依据以上作图,若 AF = 2 CE = 3 BD = 3 2 ,则 CD 的长是 (    )

A.

9 10

B.

1

C.

9 4

D.

4

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC 的角平分线交 BC 于点 D DE / / AB DF / / AC

(1)试判断四边形 AFDE 的形状,并说明理由;

(2)若 BAC = 90 ° ,且 AD = 2 2 ,求四边形 AFDE 的面积.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD中, MAMCMBMD,以 AB为直径的圆 O过点 M且与 DC延长线相切于点 E

(1)求证:四边形 ABCD是菱形;

(2)若 AB=4,求 BM 的长(结果请保留π)

来源:2017年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质试题