如图,在 中, 为斜边 的中线,过点 作 于点 ,延长 至点 ,使 ,连接 , ,点 在线段 上,连接 ,且 , , .下列结论:
① ;
②四边形 是平行四边形;
③ ;
④ .
其中正确结论的个数是
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在边长为4的正方形中,将沿射线平移,得到,连接、.求的最小值为 .
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.
如图,已知抛物线:与轴交于,两点在的左侧),与轴交于点.
(1)直接写出点,,的坐标;
(2)将抛物线经过向右与向下平移,使得到的抛物线与轴交于,两点在的右侧),顶点的对应点为点,若,求点的坐标及抛物线的解析式;
(3)在(2)的条件下,若点在轴上,则在抛物线或上是否存在点,使以,,,为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点的坐标;如果不存在,请说明理由.
已知:点 , 分别是 的边 , 的中点,如图所示.
求证: ,且 .
证明:延长 到点 ,使 ,连接 , , ,又 ,则四边形 是平行四边形,接着以下是排序错误的证明过程:
① ;
② .即 ;
③ 四边形 是平行四边形;
④ ,且 .
则正确的证明顺序应是:
A. |
② ③ ① ④ |
B. |
② ① ③ ④ |
C. |
① ③ ④ ② |
D. |
① ③ ② ④ |
如图,点 的坐标为 ,点 在 轴上,把 沿 轴向右平移到 ,若四边形 的面积为9,则点 的坐标为 .
如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形的顶点在格点上,点是边与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.
(1)如图1,过点画线段,使,且.
(2)如图1,在边上画一点,使.
(3)如图2,过点画线段,使,且.
如图,在平面直角坐标系中,平行四边形的顶点,的坐标分别为,,经过,两点的抛物线与轴的一个交点的坐标为.
(1)求该抛物线的解析式;
(2)若的平分线交于点,交抛物线的对称轴于点,点是轴上一动点,当的值最小时,求点的坐标;
(3)在(2)的条件下,过点作的垂线交于点,点,分别为抛物线及其对称轴上的动点,是否存在这样的点,,使得以点,,,为顶点的四边形为平行四边形?若存在,直接写出点的坐标,若不存在,说明理由.
如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为.过点作于,连接交边于.以、为边作平行四边形.
(1)当为何值时,为直角三角形;
(2)是否存在某一时刻,使点在的平分线上?若存在,求出的值,若不存在,请说明理由;
(3)求的长;
(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.
如图,正方形的边在正方形的边上,连接,过点作,交于点.连接,,其中交于点.
(1)求证:为等腰直角三角形.
(2)若,,求的长.
如图, 是 边 延长线上一点,连接 、 、 , 交 于点 .添加以下条件,不能判定四边形 为平行四边形的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在中,对角线与相交于点,点,分别为,的中点,延长至,使,连接.
(1)求证:;
(2)当与满足什么数量关系时,四边形是矩形?请说明理由.