如图,抛物线与轴交于、两点在的左侧),与轴交于点,过点的直线与轴交于点,与抛物线的另一个交点为,已知,,点为抛物线上一动点(不与、重合).
(1)求抛物线和直线的解析式;
(2)当点在直线上方的抛物线上时,过点作轴交直线于点,作轴交直线于点,求的最大值;
(3)设为直线上的点,探究是否存在点,使得以点、,、为顶点的四边形为平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
如图,抛物线 与 轴相交于点 和点 ,与 轴相交于点 ,作直线 .
(1)求抛物线的解析式;
(2)在直线 上方的抛物线上存在点 ,使 ,求点 的坐标;
(3)在(2)的条件下,点 的坐标为 ,点 在抛物线上,点 在直线 上.当以 , , , 为顶点的四边形是平行四边形时,请直接写出点 的坐标.
如图,已知在平面直角坐标系 中,抛物线 的顶点为 ,与 轴的交点为 .过点 的直线 与抛物线交于另一点 (点 在对称轴左侧),点 在 的延长线上,连结 , , 和 .
(1)如图1,当 轴时,
①已知点 的坐标是 ,求抛物线的解析式;
②若四边形 是平行四边形,求证: .
(2)如图2,若 , ,是否存在这样的点 ,使四边形 是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在 中, , .连接 ,过点 作 ,交 的延长线于点 ,连接 ,交 于点 .若 ,则四边形 的面积为
A. |
|
B. |
|
C. |
6 |
D. |
|
如图是由边长为1的小正方形构成的 的网格,点 , 均在格点上.
(1)在图1中画出以 为边且周长为无理数的 ,且点 和点 均在格点上(画出一个即可).
(2)在图2中画出以 为对角线的正方形 ,且点 和点 均在格点上.
如图,在平行四边形 中, 是 的中点,则下列四个结论:
① ;
②若 , ,则 ;
③若 ,则 ;
④若 ,则 与 全等.
其中正确结论的个数为
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在 中, 为 的中点,以 为圆心, 长为半径画弧交对角线 于点 ,若 , , ,则扇形 的面积为 .
如图,在 中,对角线 与 相交于点 ,过点 的直线 与 、 的延长线分别交于点 、 .
(1)求证: ;
(2)请再添加一个条件,使四边形 是菱形,并说明理由.
如图, 是 的对角线.
(1)尺规作图(请用 铅笔):作线段 的垂直平分线 ,交 , , 分别于 , , ,连接 , (保留作图痕迹,不写作法).
(2)试判断四边形 的形状并说明理由.
如图,点 是 对角线的交点, 过点 分别交 , 于点 , ,下列结论成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, AB AD.
(1)用尺规完成以下基本作图:在 AB上截取 AE,使得 AE= AD;作∠ BCD的平分线交 AB于点 F.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,连接 DE交 CF于点 P,猜想△ CDP按角分类的类型,并证明你的结论.