如图, DB 是 ▱ ABCD 的对角线.
(1)尺规作图(请用 2 B 铅笔):作线段 BD 的垂直平分线 EF ,交 AB , DB , DC 分别于 E , O , F ,连接 DE , BF (保留作图痕迹,不写作法).
(2)试判断四边形 DEBF 的形状并说明理由.
如图,点D、E分别在△ABC的边BA、CA的延长线上,且DE∥BC,,F为AC的中点.(1)设,,试用的形式表示、;(x、y为实数)(2)作出在、上的分向量.(保留作图痕迹,不写作法,写出结论)
如图,抛物线与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.
鄞州区有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类 野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式;(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出与x之间的函数关系式;(3)李经理将这批野生菌存放多少天后出售可获得最大利润元?(利润=销售总额-收购成本-各种费用)
某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).
如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,CT=,求AD的长.