如图,在 ▱ ABCD 中,对角线 AC 与 BD 相交于点 O ,过点 O 的直线 EF 与 BA 、 DC 的延长线分别交于点 E 、 F .
(1)求证: AE = CF ;
(2)请再添加一个条件,使四边形 BFDE 是菱形,并说明理由.
已知:二次函数中的满足下表:
(1)求的值; (2)根据上表求时的的取值范围; (3)若,两点都在该函数图象上,且,试比较与的大小.
某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶,每级小台阶都为0.4米.现要做一个不锈钢的扶手AB及两根与FG垂直且长均为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且. (1)求点D与点C的高度差DH的长度; (2)求所用不锈钢材料的总长度(即AD+AB+BC). (结果精确到0.1米.参考数据:,,)
如图,⊙P与y轴相切,圆心为P(-2,1),直线MN过点M(2,3),N(4,1). (1)请你在图中作出⊙P关于y轴对称的⊙P′;(不要求写作法) (2)求⊙P在轴上截得的线段长度; (3)直接写出圆心P′到直线MN的距离.
已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,-3),B(4,0). (1)求点D的坐标; (2)求经过点C的反比例函数解析式.
已知:把和按如图(1)摆放(点与点重合),点、()、在同一条直线上.,,,,.如图(2),从图(1)的位置出发,以的速度沿向匀速移动,在移动的同时,点从的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.与相交于点,连接,设移动时间为. (1)当为何值时,点在线段的垂直平分线上? (2)连接,设四边形的面积为,求与之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由. (3)是否存在某一时刻,使、、三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)