如图1, AF, BE是△ ABC的中线, AF⊥ BE,垂足为点 P,设 BC= a, AC= b, AB= c,则 a 2+ b 2=5 c 2,利用这一性质计算.如图2,在▱ ABCD中, E, F, G分别是 AD, BC, CD的中点, EB⊥ EG于点 E, AD=8, AB=2 ,则 AF= .
如图, P是▱ ABCD的边 AD上一点, E、 F分别是 PB、 PC的中点,若▱ ABCD的面积为16 cm 2,则△ PEF的面积(阴影部分)是 cm 2.
如图,在▱ ABCD中, AC是一条对角线, EF∥ BC,且 EF与 AB相交于点 E,与 AC相交于点 F,3 AE=2 EB,连接 DF.若 S △ AEF=1,则 S △ ADF的值为 .
如图,在平行四边形 ABCD中, E, F分别是 AB, BC边上的中点, CE⊥ AB,垂足为 E, AF⊥ BC,垂足为 F, AF与 CE相交于点 G;
(1)求证:△ CFG≌△ AEG;
(2)若 AB=6,求四边形 AGCD的对角线 GD的长.
如图,将平行四边形 ABCD沿对角线 BD折叠,使点 A落在点 A′处,∠1=∠2=48°,则∠ A′的度数为 .
阅读理解:
我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把 的值叫做这个平行四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是 .
猜想证明:
(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2, 之间的数量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且 ,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为 ,平行四边形A1B1C1D1的面积为 ,试求∠A1E1B1+∠A1D1B1的度数.
如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)若 ,求EF和半径OA的长.
如图,在平行四边形 ABCD中, AD> AB.
(1)作∠ BAD的平分线交 BC于点 E,在 AD边上截取 AF= AB,连接 EF(要求:尺规作图,保留作图痕迹,不写作法);
(2)判断四边形 ABEF的形状,并说明理由.
已知平行四边形 ABCD的顶点 A在第三象限,对角线 AC的中点在坐标原点,一边 AB与 x轴平行且 AB=2,若点 A的坐标为( a, b),则点 D的坐标为 .
邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第 n次操作余下的四边形是菱形,则称原平行四边形为 n阶准菱形,如图1,▱ ABCD中,若 AB=1, BC=2,则▱ ABCD为1阶准菱形.
(1)猜想与计算:
邻边长分别为3和5的平行四边形是 阶准菱形;已知▱ ABCD的邻边长分别为 a, b( a> b),满足 a=8 b+ r, b=5 r,请写出▱ ABCD是 阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把▱ ABCD沿 BE折叠(点 E在 AD上),使点 A落在 BC边上的点 F处,得到四边形 ABFE.请证明四边形 ABFE是菱形.
在▱ ABCD中, AE平分∠ BAD交边 BC于 E, DF平分∠ ADC交边 BC于 F,若 AD=11, EF=5,则 AB= .
如图,在▱ ABCD中,∠ B=30°, AB= AC, O是两条对角线的交点,过点 O作 AC的垂线分别交边 AD, BC于点 E, F;点 M是边 AB的一个三等分点,则△ AOE与△ BMF的面积比为 .
已知平行四边形 ABCD.
(1)尺规作图:作∠ BAD的平分线交直线 BC于点 E,交 DC延长线于点 F(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证: CE= CF.