△ABC为等边三角形, , 于点D,E为线段 上一点, .以AE为边在直线 右侧构造等边三角形 ,连接 ,N为 的中点.
(1)如图1, 交于点G,连接 ,求线段 的长;
(2)如图2,将 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 , .当 时,猜想∠DNM的大小是否为定值,并证明你的结论;
(3)连接BN,在 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 的面积.
如图,菱形 的边长为1, ,点 是边 上任意一点(端点除外),线段 的垂直平分线交 , 分别于点 , , , 的中点分别为 , .
(1)求证: ;
(2)求 的最小值;
(3)当点 在 上运动时, 的大小是否变化?为什么?
如图1,在等腰三角形 中, , ,点 、 分别在边 、 上, ,连接 ,点 、 、 分别为 、 、 的中点.
(1)观察猜想.
图1中,线段 、 的数量关系是 , 的大小为 .
(2)探究证明
把 绕点 顺时针方向旋转到如图2所示的位置,连接 、 、 ,判断 的形状,并说明理由;
(3)拓展延伸
把 绕点 在平面内自由旋转,若 , ,请求出 面积的最大值.
如图,已知线段 , 于点 ,且 , 是射线 上一动点, , 分别是 , 的中点,过点 , , 的圆与 的另一交点 (点 在线段 上),连接 , .
(1)当 时,求 和 的度数;
(2)求证: .
(3)在点 的运动过程中
①当 时,取四边形 一边的两端点和线段 上一点 ,若以这三点为顶点的三角形是直角三角形,且 为锐角顶点,求所有满足条件的 的值;
②记 与圆的另一个交点为 ,将点 绕点 旋转 得到点 ,当点 恰好落在 上时,连接 , , , ,直接写出 和 的面积之比.
在直角坐标系中,过原点 及点 , 作矩形 、连接 ,点 为 的中点,点 是线段 上的动点,连接 ,作 ,交 于点 ,连接 .已知点 从 点出发,以每秒1个单位长度的速度在线段 上移动,设移动时间为 秒.
(1)如图1,当 时,求 的长.
(2)如图2,当点 在线段 上移动的过程中, 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 的值.
(3)连接 ,当 将 分成的两部分的面积之比为 时,求相应的 的值.
如图1,在△ ABC中,∠ ACB=90°,∠ B=30°, AC=4, D是 AB的中点, EF是△ ACD的中位线,矩形 EFGH的顶点都在△ ACD的边上.
(1)求线段 EF、 FG的长;
(2)如图2,将矩形 EFGH沿 AB向右平移,点 F落在 BC上时停止移动,设矩形移动的距离为 x,矩形与△ CBD重叠部分的面积为 S,求出 S关于 x的函数解析式;
(3)如图3,矩形 EFGH平移停止后,再绕点 G按顺时针方向旋转,当点 H落在 CD边上时停止旋转,此时矩形记作 E 1 F 1 GH 1,设旋转角为α,求cosα的值.
如图,四边形是正方形,点为对角线的中点.
(1)问题解决:如图①,连接,分别取,的中点,,连接,则与的数量关系是 ,位置关系是 ;
(2)问题探究:如图②,△是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.判断的形状,并证明你的结论;
(3)拓展延伸:如图③,△是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.若正方形的边长为1,求的面积.