初中数学

如图,在 ABCD 中, AB = 10 AD = 15 BAD 的平分线交 BC 于点 E ,交 DC 的延长线于点 F BG AE 于点 G ,若 BG = 8 ,则 ΔCEF 的周长为 (    )

A.16B.17C.24D.25

来源:2020年海南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

(1)某学校“智慧方园”数学社团遇到这样一个题目:

如图1,在 ΔABC 中,点 O 在线段 BC 上, BAO = 30 ° OAC = 75 ° AO = 3 3 BO : CO = 1 : 3 ,求 AB 的长.

经过社团成员讨论发现,过点 B BD / / AC ,交 AO 的延长线于点 D ,通过构造 ΔABD 就可以解决问题(如图 2 )

请回答: ADB =    ° AB =   

(2)请参考以上解决思路,解决问题:

如图3,在四边形 ABCD 中,对角线 AC BD 相交于点 O AC AD AO = 3 3 ABC = ACB = 75 ° BO : OD = 1 : 3 ,求 DC 的长.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° ,点 D 与点 B AC 同侧, DAC > BAC ,且 DA = DC ,过点 B BE / / DA DC 于点 E M AB 的中点,连接 MD ME

(1)如图1,当 ADC = 90 ° 时,线段 MD ME 的数量关系是         

(2)如图2,当 ADC = 60 ° 时,试探究线段 MD ME 的数量关系,并证明你的结论;

(3)如图3,当 ADC = α 时,求 ME MD 的值.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在等腰三角形 ABC 中, BAC = 120 ° AB = AC = 2 ,点 D BC 边上的一个动点(不与 B C 重合),在 AC 上取一点 E ,使 ADE = 30 °

(1)求证: ΔABD ΔDCE

(2)设 BD = x AE = y ,求 y 关于 x 的函数关系式并写出自变量 x 的取值范围;

(3)当 ΔADE 是等腰三角形时,求 AE 的长.

来源:2017年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° CD AB ,垂足为 D AF 平分 CAB ,交 CD 于点 E ,交 CB 于点 F .若 AC = 3 AB = 5 ,则 CE 的长为 (    )

A. 3 2 B. 4 3 C. 5 3 D. 8 5

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知在菱形 ABCD 中, ABC = 60 ° ,对角线 AC BD 相交于点 O ,点 E 是线段 BD 上一动点(不与点 B D 重合),连接 AE ,以 AE 为边在 AE 的右侧作菱形 AEFG ,且 AEF = 60 °

(1)如图1,若点 F 落在线段 BD 上,请判断:线段 EF 与线段 DF 的数量关系是    

(2)如图2,若点 F 不在线段 BD 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;

(3)若点 C E G 三点在同一直线上,其它条件不变,请直接写出线段 BE 与线段 BD 的数量关系.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中, ABC = 60 ° ,点 P 是射线 BD 上一动点,以 AP 为边向右侧作等边 ΔAPE ,点 E 的位置随着点 P 的位置变化而变化.

(1)如图1,当点 E 在菱形 ABCD 内部或边上时,连接 CE BP CE 的数量关系是   CE AD 的位置关系是  

(2)当点 E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);

(3)如图4,当点 P 在线段 BD 的延长线上时,连接 BE ,若 AB = 2 3 BE = 2 19 ,求四边形 ADPE 的面积.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BE 是高, ABE = 45 ° ,点 F AB 的中点, AD FE BE 分别交于点 G H CBE = BAD .有下列结论:① FD = FE ;② AH = 2 CD ;③ BC AD = 2 A E 2 ;④ S ΔABC = 4 S ΔADF .其中正确的有 (    )

A.1个B.2 个C.3 个D.4个

来源:2016年辽宁省丹东市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,以 BC 为直径的 O AB 于点 D ,切线 DE AC 于点 E

(1)求证: A = ADE

(2)若 AD = 16 DE = 10 ,求 BC 的长.

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 的外侧,作等边 ΔADE ,则 BED 的度数是      

来源:2017年湖北省黄冈市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D ,过点 D O 的切线交 AC 于点 E

(1)求证: DE AC

(2)若 O 的半径为5, BC = 16 ,求 DE 的长.

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, O 中, AB ̂ = AC ̂ ABC = 70 ° .则 BOC 的度数为 (    )

A. 100 ° B. 90 ° C. 80 ° D. 70 °

来源:2020年四川省泸州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别在 AB AC 上, BD = CE BE CD 相交于点 O

(1)求证: ΔDBC ΔECB

(2)求证: OB = OC

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC .将 ΔABC 沿着 BC 方向平移得到 ΔDEF ,其中点 E 在边 BC 上, DE AC 相交于点 O

(1)求证: ΔOEC 为等腰三角形;

(2)连接 AE DC AD ,当点 E 在什么位置时,四边形 AECD 为矩形,并说明理由.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质试题